Производство масел: Производство масел

Содержание

Производство масел

Содержание страницы

Основное назначение масел – смазка трущихся твердых поверхностей. Кроме того, они используются в других целях, например, для охлаждения и специальных технических целей. Основными характеристиками масел являются:

1. Вязкость – в зависимости от условий эксплуатации, требования к вязкости различны (легкие индустриальные масла должны иметь кинематическую вязкость при 50ºС от 4 до 8,5 мм2/с, а наиболее вязкие остаточные масла 60 – 70 мм2/с).

2. Для масел, работающих в широком диапазоне изменения температур, большое значение имеет вязкостно-температурная характеристика или индекс вязкости.

При высоких температурах масла не должны сильно разжижаться, а при низких температурах, наоборот, не терять свою текучесть. Природные вязкостно-температур-ные свойства нефтяных масел даже лучших месторождений не соответствуют требованиям к современным моторным маслам. Значительное улучшение свойств масел достигается путем удаления из них низкоиндексных компонентов и применения специальных присадок.

3. В случае, когда масло работает при больших нагрузках и малых скоростях движения даже высокая вязкость масла не обеспечивает режима жидкостной смазки. При этом масло полностью выжимается из-под трущихся поверхностей. Важнейшей характеристикой в этом случае становится не вязкость, а маслянистость или смазывающая способность. Это способность создавать на металлической поверхности весьма прочный, хотя и тонкий смазочный слой толщиной, не превышающей одного микрона, т.е. от 50 до 500 молекулярных слоев. Такой тип смазки получил названия полусухой или граничной смазки. Несмотря на ничтожную толщину такого слоя, износ материалов уменьшается в несколько тысяч раз по сравнению с сухим трением.

4. Масла для холодильных машин, трансформаторов, приборные, моторные и другие не должны терять подвижность при низких температурах до минус 18 – 30 и даже минус 60 ºС. Величина температуры застывания масел зависит от присутствия в них высокомолекулярных твердых углеводородов (парафинов и церезинов). При низких температурах они кристаллизуются, образуя пространственные структурные сетки, в результате масло теряет текучесть. Для понижения температур застывания проводят депарафинизацию масел с отделением твердых кристаллов углеводородов, после этого в масло вводят специальные присадки (депрессоры).

5. Химическая стойкость по отношению к кислороду воздуха – это характеристика наиболее важна для масел, которые эксплуатируются в условиях циркуляционной смазки, т.е. многократно прокачиваются через узлы трения. Окисление может происходить либо во всем объеме масла, либо в тонком слое, когда масло прокачивается через цилиндропоршневые узлы трения. В последнем случае масло работает в особо тяжелых условиях.

Радикальным способом повышение антиокислительных свойств является использование процессов каталитического гидрирования масел. Для этих целей используются также специальные антиокислительные присадки. Кроме перечисленных к маслам добавляются и другие присадки: антикоррозионные, противозадирные, моющие, антинагарные, антипенные и др. В настоящее время используются многофункциональные присадки, которые улучшают одновременно различные свойства масел. Это либо смесь присадок одностороннего действия, либо специальные сложные органические соединения, содержащие серу, фосфор, металлы и различные полярные группы.

Все нефтяные масла получают из мазута в три этапа:

  1. Подготовка сырья – это получение исходных масляных фракций.
  2. Получение базовых масляных компонентов из исходных масляных фракций.
  3. Смешивание отдельных базовых масляных компонентов (компаундирование)

и «сдабривание» их присадками для получения товарных марок масел.

Принципиальная блок-схема получения масел из мазута приведена на рис. 69. Она включает в себя следующие основные стадии.

1. Подготовка сырья, которая состоит в вакуумной перегонке мазута по масляной схеме. Получаемые фракции делят на две группы:

а) дистиллятные (300 – 400; 350 – 420 и 420 – 450 ºС),

б) остаточные – это остаток перегонки мазута (гудрон или полугудрон).

Соответственно этому масла, получаемые из дистиллятных масляных фракций, называются дистиллятными, а из гудрона – остаточными.

Получение базовых масляных компонентов из исходных масляных фракций представляет собой сложный многоступенчатый процесс очистки. Необходимо удалить все кислые соединения, непредельные углеводороды, частично сернистые соединения, полициклические ароматические углеводороды с короткими боковыми цепями и твердые углеводороды. Для этого используют различные методы очистки: экстракцию селективными растворителями, кристаллизацию при пониженной температуре, адсорбцию,

Рис. 69. Блок-схема производства масел из нефтей восточных районов

2. Взаимодействие с серной кислотой, гидроочистку и другие процессы. Производство остаточных масел сложнее, чем дистиллятных из-за высокого содержания смолисто-асфальтеновых примесей в исходном сырье (гудроне) до 50 % и более.

Гудрон, прежде всего, подвергают деасфальтизации, то есть освобождению от смолисто-асфальтеновых примесей. Очищенный гудрон (деасфальтизат) направляют далее на селективную очистку фенолом или фурфуролом для доизвлечения оставшихся смолисто-асфальтеновых примесей, но главным образом для удаления низкоиндексных полициклических ароматических углеводородов с короткими боковыми цепями с целью повышения индекса вязкости. Иногда деасфальтизацию и селективную очистку объединяют с использованием парных растворителей (доусол-процесс).

Из рафинатов селективной очистки (масляные фракции) после селективной очистки осаждают твердые углеводороды при помощи специальных избирательных растворителей (метилэтилкетона, толуола и др.) при охлаждении. Масляные фракции после отделения выпавших кристаллов твердых углеводородов (депарафинизат) окончательно доводят до кондиции путем адсорбционной очистки или гидроочистки. Дистиллятные масляные фракции в деасфальтизации не нуждаются, а в остальном схема производства дистиллятных и остаточных масел совпадают.

3. Масла товарных марок готовят смешиванием отдельных компонентов базовых масел в строго определенных соотношениях с добавлением присадок. Это происходит на установках компаундирования.

1. Деасфальтизация масел

Остаточные масла получают из гудронов и полугудронов, которые содержат в своем составе более 50 % высокомолекулярных смол и асфальтенов, которые подлежат удалению. Сложный состав этих примесей затрудняет подбор для них избирательных растворителей, поэтому на практике подбирают такие селективные растворители, в которых хорошо растворяются ценные углеводороды масла, а примеси не растворяются и поэтому выпадают в осадок (так называемый метод обратной экстракции). В качестве такого растворителя в настоящее время наиболее широко используется жидкий пропан.

Важнейшие параметры процесса экстракции.

1. Температура (температурный диапазон, при котором осадок смол и асфальтенов легко отделяет от раствора масла в пропане, находится в пределах 50 – 85 ºС.

Верхний предел ограничен критической температурой сжижения пропана (tкрит. = + 96,8 ºС). Чем ближе температура пропана к критической, тем выше его селективность, но меньше растворяющая способность. Это приводит к ухудшению растворения масла и к увеличению его потерь вместе со смолами и асфальтенами, т.е. при этом снижается выход деасфальтизата. Напротив, при снижении температуры растворяющая способность жидкого пропана растет, но селективность падает. Это приводит к увеличению выхода, но связано с ухудшением качества деасфальтизата.

Этот недостаток жидкого пропана преодолевается путем организации его взаимодействия с исходным сырьем в колонных аппаратах в режиме противотока в неизотермических условиях. При этом жидкий пропан подается вниз колонны и поднимается навстречу к более плотному сырью, подаваемому сверху.

В верхней части колонны поддерживают температуру 75 – 85ºС, а в нижней 50 – 60 ºС. Этот температурный перепад, равный 15 – 20 ºС (так называемый температурный градиент деасфальтизации), позволяет в нижней части колонны максимально извлечь масло из смол и асфальтенов, а в верхней части повысить качество раствора деасфальтизата за счет уменьшения растворимости примесей смол и асфальтенов. Для поддержания пропана в сжиженном состоянии используется давление 4 – 4,5 МПа.

2. Соотношение пропана к сырью. Оно зависит от концентрации примеси смол и асфальтенов в исходном сырье. Чем больше этих примесей, тем это соотношение должно быть меньше. На практике оно колеблется в широких пределах от (4 – 8) к одному. Увеличение этого соотношения до определенных пределов снижает вязкость раствора и улучшает условия осаждения примесей и повышает качество масла. Но при чрезмерном увеличении избытка пропана в нем начинают растворяться также нежелательные примеси, что вызывает снижение качества масла.

Процесс деасфальтизации часто проводят в две ступени: раствор асфальта, полученный на первой ступени, подвергают дополнительной деасфальтизации пропаном на второй ступени. За счет этого извлечения масла из сырья повышается на 10 %.

1.1. Принципиальная технологическая схема

Принципиальная технологическая схема двухступенчатой деасфальтизации гудрона приведена на рис. 70.

Исходное сырье (гудрон) сырьевым насосом 1 подается в пароподогреватель 2 и далее в среднюю часть экстракционной колонны первой ступени 3. В низ этой колонны насосом 10 подается жидкий пропан. Раствор деасфальтизата первой ступени в пропане уходит с верха колонны 3 с температурой 86 – 87 ºС, а раствор асфальта первой ступени с низа колонны 3 с температурой 63 – 64 ºС направляется в середину экстракционной колонны второй ступени 4. В нижнюю часть колонны также поступает жидкий пропан.

С верха колонны 4 уходит раствор деасфальтизата второй ступени в пропане с температурой 81 – 82 ºС. Пропан из растворов деасфальтизатов первой и второй ступеней регенерируется раздельно. Раствор деасфальтизата первой ступени входит в испаритель 5, где испаряется основная доля пропана. Далее раствор деасфальтизата подогревается в теплообменнике 19 и поступает в колонну 20, где дросселируется до 1,8 МПа с выделением газообразного пропана. С низа колонны 20 деасфальтизат первой ступени поступает в колонну 21, где окончательно дросселируется и отпаривается от остатков пропана острым водяным паром и насосом 22 откачивается с установки через холодильник 26.

Раствор деасфальтизата второй ступени с верха колонны 4 отпаривается последовательно в двух ребойлерах 6 и 7. Окончательно пропан отпаривается острым водяным паром в колонне 23, после этого деасфальтизат второй ступени насосом 24 через холодильник 25 откачивается с установки.

Рис. 70. Принципиальная технологическая схема двухступенчатой деасфальтизации масел пропаном:

1, 10, 13, 17, 22, 24 – насосы; 2 – пароподогреватель; 3, 4, 14, 15, 20, 21, 23, 27 – колонны; 5 – 7 – испарители; 8, 11, 18, 25, 26 – холодильники; 9, 12 – емкости; 16 – печь; 19 – теплообменник; 28 – компрессор.

I – сырье, II – пропан, III – деасфальтизат первой ступени, IV – деасфальтизат  второй ступени, V – асфальт, VI – водяной пар, VII – вода

Раствор асфальта второй ступени с низа колонны 4 подается в трубчатую печь 16, где нагревается до 200 – 250 ºС и поступает в колонну 15. Здесь отделяется основная масса пропана. С низа колонны 15 раствор направляется в колонну 14 для окончательной отпарки острым водяным паром. С низа колонны 14 асфальт насосом 17 откачивается через теплообменник 19 и холодильник 18 с установки.

Пары пропана под давлением 2,7 МПа и температурой 50 – 100 ºС из испарителей 5 и 6 и колонны 15 конденсируются в холодильнике 8 и собираются в емкости 9. Пары пропана под давлением 1,8 МПа из испарителя 7 и колонн 20 конденсируются в холодильнике 11 и собираются в емкости 12, откуда насосом 13 перекачиваются в емкость 9. Газообразный пропан и водяные пары из колонн 14, 21 и 23 подвергаются осушке в колонне 27, орошаемой холодной водой. Пропан не растворяется в воде и с верха колонны 27 поступает в компрессор 28, сжимается до 1,9 МПа и возвращается в систему жидкого пропана.

1.2. Основное технологическое оборудование

В качестве примера рассмотрим экстракционную колонну для деасфальтизации пропаном (рис. 71). Она представляет собой колонный аппарат с верхним и нижним полусферическими днищами. Внутренний диаметр 3400 мм, толщина стенки 70 мм, высота 19200 мм, полный объем 119 м3. Сравнительно высокое давление в колонне (3 – 4 МПа) вызвано необходимостью поддерживания пропана при температуре 70 – 90 0С в жидкой фазе.

В зоне экстракции для улучшения условий контактирования пропана с сырьем установлены девять жалюзийных тарелок 1. Между ними имеются коллекторы из перфорированных труб для ввода и распределения сырья 2 и жидкого пропана 3. Образующаяся при экстракции тяжелая фаза (раствор асфальтовых веществ в пропане) опускается вниз, а легкая фаза (раствор деасфальтизата в пропане) поднимается вверх.

В верхней и нижней частях колонны (20 % объема) расположены отстойные зоны. В верхней отстойной зоне имеются шесть встроенных пароподогревателей для поддержания температурного градиента процесса и две тарелки для укрупнения мельчайших капелек примесей асфальтенов, выделяющихся при нагреве раствора масла.

Жалюзийная тарелка (рис. 72) состоит из секций, которые опираются на каркас из пластин-балок 3 и распорных стержней 4. Секция состоит из наклонно установленных пластин (жалюзей) 1 и дистанционных ребер 2. Сверху жалюзи прижимаются специальными планками.

Корпус колонны выполнен из стали 09Г2С или 16ГС, расчетное давление 50 кг/см2, расчетная температура 100 ºС.

Подача жидкого пропана в экстракционную колонну осуществляется двухступенчатым центробежным насосом Н-500-420СГ с торцевым уплотнением (подача 420 м3/ч, напор 5 МПа). Подача газообразного пропана проводится компрессором 305ГП20/18 (подача 1200 м3/ч, давление после первой ступени сжатия ступени 3,6 кгс/см2, мощность двигателя 200 кВт).

Рис. 71. Экстракционная колонна1 – тарелки жалюзийные, 2 – штуцеры для подачи сырья (гудрона), 3 – штуцеры для подачи жидкого пропана

Рис. 72. Жалюзийная тарелка:

1 – пластины наклонные (жалюзи), 2 – ребро дистанционное, 3 – пластиныбалки, 4 – стержни распорные

Фенольная или селективная очистка проводится как для дистиллятных, так и для остаточных масляных фракций. Целью очистки является окончательное удаление из сырья смолисто-асфальтеновых соединений, но главным образом удаление низкоиндексных полициклических ароматических углеводородов с короткими боковыми цепями. В результате улучшается цвет масла, повышается индекс вязкости, снижается коксуемость и уменьшается содержание сернистых примесей. Наиболее распространенными селективными растворителями является фенол и фурфурол. В последние годы найден более эффективный растворитель Nметилпирролидон.

2. Фенольная очистка масел

При взаимодействии с масляной фракцией эти растворители хорошо растворяют нежелательные примеси и относительно мало ценные углеводороды (прямая экстракция). При этом образуется две фазы: верхняя фаза или рафинатный раствор, который содержат очищенное масло с небольшим количеством растворителя, нижняя фаза – экстрактный раствор, который содержит основную массу растворителя и нежелательные примеси. Количество используемого растворителя должно быть (1,5 – 2,2) : 1 для дистиллятных масел и (4 – 4,5) : 1 – для остаточных масел. Чрезмерное увеличение этого соотношения приводит к уменьшению концентрации экстрактного раствора и переходу в него части ценных углеводородов. При этом степень очистки возрастает, но уменьшается выход рафинатного раствора. Чрезмерное уменьшение этого соотношения приводит к обратному эффекту.

Большое значение имеет также температурный режим очистки. С повышением температуры растворяющая способность растворителей возрастает, но избирательность снижается и при критической температуре получается однородный раствор. Поэтому к растворителям предъявляются следующие требования: его критическая температура должна быть достаточно высокой, чтобы можно было вести очистку в интервале сравнительно высоких температур 80 – 150 ºС. Это вызвано тем, что при понижении температуры возрастает вязкость системы, и ухудшаются условия массообмена.

Процесс экстракции фенолом проводят в колонных аппаратах. Фенол, который имеет большую плотность, чем сырье, подают сверху колонны, а сырье – снизу. В процессе противоточного контактирования сырье освобождается от нежелательных примесей. По мере подъема рафината его критическая температура повышается, поэтому для улучшения процесса вверху колонны поддерживают более высокую температуру, чем в нижней части в месте ввода сырья. Разность этих температур, зависящая как от свойств растворителя, так и характеристики сырья, называется температурным градиентом экстракции.

Фурфурол имеет перед фенолом ряд преимуществ. Он менее токсичен, дает больший выход рафината и благодаря меньшей температуре кипения и теплоты испарения более экономичен. Но он более дорог и не обеспечивает достаточной степени очистки остаточных масел. Кроме того, он хуже растворяет смолы и поэтому получаемое масло имеет более темный цвет.

Более современным является замена фенола и фурфурола на N-метилпирролидон.

2.1. Принципиальная технологическая схема

Принципиальная технологическая схема установки селективной очистки масел фенолом приведена на рис. 73.

Рис. 73. Принципиальная технологическая схема селективной очистки масел фенолом:

1, 4, 7, 17, 20, 30, 35 – холодильники; 2, 5, 6, 10 – 12, 22 – колонны; 3, 21 – пароподогреватели; 8, 18 – емкости; 9, 13, 14, 19, 24, 25, 29, 33, 34, 36 – насосы; 15, 26, 27 теплообменники; 23, 31, 32 – печи; 28 – кипятильник.

I – сырье, II – фенол, III – рафинат, IV – экстракт, V – водяной пар, VI – вода

Сырье насосом 13 через теплообменник 15 и пароподогреватель 3 с температурой 110 – 115 ºС подается в верх абсорбера 2. В нижнюю часть абсорбера вводится смесь паров воды и фенола. Пары фенола хорошо растворяются в масле, а пары воды не конденсируются в горячем масле и попадают в холодильник 1 и далее в канализацию. Масло с низа абсорбера 2 насосом 14 через холодильник 16 подается в среднюю часть экстракционной колонны 5. В верхнюю часть этой колонны поступает безводный расплав фенола, а в нижнюю фенольная вода с целью выделения из экстракта вторичного рафината. Таким образом, фенольная вода является антирастворителем.

Температура верха К-2 равняется 58 – 88 ºС, соотношение фенола к сырью составляет (1,5 – 2,2) : 1 – для дистиллятного сырья и (4 – 4,5) : 1 – для остаточного.

Регенерацию фенола из рафинатного раствора ведут в две стадии. Рафинатный раствор с верха колонны 5 насосом 25 через теплообменник 27 и печь 23 с температурой 270 – 290 ºС подается в колонну 6, где испаряется основная часть фенола. С низа колонны 6 раствор перетекает в колонну 22, где окончательно отпаривается от остатков фенола острым водяным паром. Рафинат отводится с низа колонны 22 насосом 24 через теплообменник 27 и холодильник 30 с установки.

Раствор экстракта освобождается от фенола в три ступени. Он забирается насосом 19 снизу колонны 5. Часть его через холодильник 20 возвращается в низ колонны для поддержания требуемого температурного режима низа колонны. Другая часть через теплообменник 26 вводится в колонну 10. Здесь отгоняется азеотропная смесь паров воды и фенола (температура кипения азеотропа 99,6 ºС при атмосферном давлении, содержании фенола в азеотропной смеси составляет 9,2 %). Подогрев колонны 10 осуществляется кипятильником 28.

Из колонны 10 осушенный экстрактный раствор насосом 29 через трубчатую печь 31 с температурой 260 – 280 ºС подается в колонну 11. Здесь отгоняется большая часть сухого фенола. Подогрев низа колонны 11 проводят горячей струей при помощи насоса 33 и печи 32. Температура горячей струи 350 – 360 ºС. С низа колонны 11 экстракт со следами фенола поступает в колонну 12, где окончательно отпаривается острым водяным паром.

Из колонн 6 и 11 уходят пары сухого фенола, которые конденсируются и охлаждаются в теплообменниках 15, 26 и холодильнике 17, затем поступают в емкость сухого фенола 18. Отсюда он подается насосом 36 через пароподгреватель 21 на орошение колонны 5. С верха колонн 22 и 12 уходит смесь паров фенола и воды, ее конденсируют в холодильнике-конденсаторе 7, собирают в емкости 8, откуда насосом 9 подают в середину колонны 10. Несконденсированные пары из емкости 8 и азеотропная смесь из колонны 10 поступают частично в холодильник 4 для конденсации и далее в виде фенольной воды в низ колонны 5 в качестве антирастворителя. Другая часть паров поступает в низ абсорбера 2 для улавливания фенола. Для уменьшения испарения масла и устранения так называемого замасливания фенола колонны 6, 12 и 22 орошаются безводным фенолом. Колонна 10 орошается фенольной водой.

2.2. Основное технологическое оборудование

Экстракционные колонны представляют собой вертикальные аппараты внутренним диаметром до 5 м и высотой около 40 м. В средней части располагаются слои насадки из колец Рашига или пакетная насадка из мелкой металлической сетки. В верхней и нижней частях колонны расположены отстойные зоны. Ввод сырьевых потоков осуществляется через специальные распределительные маточники.

Колонны для отгонки растворителя снабжены 12 – 20 тарелками с S-образными элементами.

3. Депарафинизация масел

Для получения масел, пригодных к применению при температурах от минус 15 до минус 30 ºС и даже более низких температурах, рафинаты селективной очистки подвергают депарафинизации. Это осуществляется путем кристаллизации твердых углеводородов при охлаждении раствора рафината в специально подобранном растворителе.

Рафинаты селективной очистки дистиллятных фракций содержат, в основном, твердые высокомолекулярные алканы (парафины) нормального или слаборазветвленного строения (С16 и выше). При охлаждении они кристаллизуются в виде крупных хорошо фильтруемых кристаллов правильной формы. Получаемый осадок называется гачем.

Рафинаты селективной очистки остаточных масляных фракций содержат, в основном, твердые высокомолекулярные нафтеновые и ароматические углеводороды с длинными боковыми цепями. Они при охлаждении осаждаются в виде мелких игольчатых кристаллов, которые трудно фильтруются. Образующийся осадок называется петролатумом.

Одной из важнейших задач депарафинизации является получение возможно более крупных и правильных по форме кристаллов, которые легче фильтруются и промываются от остатков масла. На рост кристаллов влияют следующие основные факторы:

1. Вязкость раствора. Высокая вязкость препятствует росту кристаллов и способствует образованию большего числа мелких кристаллов.

2. Скорость охлаждения раствора. При большой скорости кристаллы не успевают вырасти и вместо малого количества крупных кристаллов, образуется большое число мелких кристаллов.

3. Концентрация твердых углеводородов в растворе. Слишком большое разбавление сырья растворителем замедляет рост кристаллов, так как при этом увеличивается длина пути молекул твердых углеводородов до встречи друг с другом с образованием и ростом кристаллов. Однако недостаточное разбавление также нежелательно, так как вызывает увеличение вязкости жидкой фазы и торможение процессов диффузии. Большое число мельчайших центров кристаллизации, содержащихся в исходном сырье, также способствует образованию мелких кристаллов. Для уничтожения этих центров сырье перед началом процесса депарафинизации подогревают на 15 – 20 ºС выше температуры плавления этих кристаллов.

Селективные растворители. Они должны хорошо растворять ценные углеводороды сырья, но не растворять твердые углеводороды. Кроме того, к этим растворителям предъявляют и специфические требования. Они должны допускать высокие скорости охлаждения и фильтрования раствора масла от осадков и иметь низкий температурный эффект депарафинизации (ТЭД). ТЭД – это разность между требуемой температурой застывания депарафинированного масла и требуемой температурой охлаждения раствора, которая обеспечивает достижения заданной температуры застывания.

Низкий ТЭД позволяет уменьшить расходы на переохлаждение растворов, а высокие скорости охлаждения и фильтрования позволяют уменьшить размеры аппаратов – кристаллизаторов и фильтров. В качестве растворителей могут применяться легкий бензин, сжиженный пропан, дихлорэтан и различные кетоны. В настоящее время наиболее широко используются следующие кетоны: ацетон СО(СН3)2, метилэтилкетон (МЭК) (СН3)СО(С2Н5) и др.

Кетоны практически не растворяют твердые углеводороды, однако плохо растворяют и масло, т.е. обладают высокой селективностью, но низкой растворяющей способностью. Для повышения растворяющей способности по отношению к маслу к кетонам добавляют толуол или его смесь с бензолом. Величина ТЭД смеси кетонов с толуолом может колебаться от 10 до 0 ºС (чем больше в смеси толуола, тем больше ТЭД).

Изменение состава растворителя, т.е. соотношения толуола к МЭКу позволяет варьировать его свойства. Увеличение содержания кетонов обеспечивает понижение температуры застывания масла, но его выход при этом снижается и наоборот, увеличивая содержание толуола, повышают температуру застывания, но способствует увеличению выхода масла. Обычно парный растворитель содержит от 25 до 50 % МЭКа.

Важным параметром является также кратность разбавления сырья. Чем больше вязкость сырья, тем больше должна быть кратность разбавления. Для маловязких дистиллятных масел она составляет 1,5 : 1, а для вязких остаточных масел до 4,5 : 1.

Более перспективными растворителями являются высокомолекулярные кетоны, например, метилизобутилкетон. Они одновременно имеют высокую селективность и растворяющую способность, поэтому не нуждается в добавках толуола.

3.1. Принципиальная технологическая схема

Принципиальная технологическая схема установки депарафинизации масел приведена на рис. 74.

В отделение кристаллизации (рис. 74 а) исходное сырье (рафинат селективной очистки) насосом 1 через подогреватель 2 и холодильник 3 подается в регенеративный кристаллизатор 4, где охлаждается раствором депарафинированного масла. Подогрев сырья в подогревателе 2 до 60 – 80 ºС обеспечивает полное расплавление мелких студнеобразных кристаллов парафинов. В холодильнике 3 сырье охлаждают, но не допуская его помутнения. Далее сырье смешивают с охлажденным влажным растворителем и циркулирующим фильтратом со второй ступени фильтрования, и подают в кристаллизатор 5, где охлаждается жидким аммиаком или пропаном, после чего смешивается с определенными порциями охлажденных влажного и сухого растворителей.

При охлаждении выпадают кристаллы твердых углеводородов, далее полученная успензия направляется в емкость первой ступени фильтрования 6, откуда самотеком идет в барабанный фильтр первой ступени 7. Здесь кристаллы осаждаются в виде лепешки на барабане фильтра, а фильтрат просачивается через фильтрующую ткань внутрь барабана под действием вакуума и собирается в емкости депарафинированного масла 17. Далее фильтрат прокачивается через кристаллизаторы 4, 12 и теплообменники 10, 11 и 15, где нагревается за счет охлажденного сырья, сухого и влажного растворителей и направляется в отделение регенерации растворителя.

Осадок гача (петролатума) на барабане фильтра 7 промывается от остатка масла сухим охлажденным растворителем, и образующийся промывной фильтрат собирается в емкости некондиционного масла 20. Срезанный ножом осадок шнеком выгружается в емкость 18, куда также подают порцию сухого охлажденного растворителя.

Рис. 74. Принципиальная технологическая схема установки депарафинизации масел:

а – отделение кристаллизации: 1, 16, 19, 21, 22 – насосы; 2 – пароподогреватель; 3 – холодильник; 4, 5, 12 – 15 – кристаллизаторы; 6, 8, 17, 18, 20, 23 – емкости; 7, 9 – фильтры; 10, 11, 15 – теплообменники.

 б – отделение регенерации растворителя: 1, 5, 10, 15, 18, 21, 27, 31, 34, 40 – холодильники; 2, 8, 14, 23, 25, 37, 38, 44 – насосы; 3, 9, 43 – емкости; 4, 7, 11, 13, 16, 24, 28, 36, 41 – колонны; 6, 12, 22, 26, 29, 35, 39, 42 – пароподогреватели; 17 – 20, 30, 32, 33 – теплообменники.

I – сырье, II – влажный растворитель; III – сухой растворитель; IV – раствор депарафинированного масла; V – раствор гача; VI – аммиак; VII – депарафинированное масло; VIII – гач; IX – вода; X – водяной пар

Из емкости 18 суспензия насосом 19 перекачивается в емкость 8, откуда самотеком перетекает в фильтр второй ступени 9. Образующийся фильтрат собирается в емкости некондиционного масла 20, а осадок промывается охлажденным сухим растворителем от остатков масла. Некондиционное масло насосом 21 возвращают к потоку сырья перед кристаллизатором 5.

Суспензия гача собирается в емкости 23 и насосом 22 через кристаллизатор 14 направляется в отделение регенерации растворителя. В ней содержатся кристаллы льда, попавшие из влажного растворителя. На современных установках имеются также трех ступенчатые схемы фильтрования.

В отделении регенерации (рис. 74 б) отгон растворителя от депарафинированного масла проводится в четыре ступени. Для этого раствор масла проходит теплообменники 17 – 20 и пароподогреватель 22 и проходит последовательно колонны 24, 4, 7 и 28. В низ колонны 28 подается острый водяной пар. Депарафинированное масло с низа колонны 28 через теплообменник 19 и холодильник 1 отводится с установки. С верха колонн 4, 24 и 7 уходят пары сухого растворителя, которые конденсируются, охлаждаются и поступают в емкость сухого растворителя 3, откуда насосом 2 сухой растворитель откачивается в отделение кристаллизации.

Отгон растворителя из суспензии гача также происходит в четыре ступени в колоннах 11, 36, 13 и 41. С верха колонн 11, 36 и 13 уходят пары влажного растворителя, которые конденсируются, охлаждаются и собираются в емкости 9, откуда насосом 8 возвращаются в отделение кристаллизации. Увлажнение растворителя вызвано присутствием в гаче кристаллов льда.

С верха колонн 28 и 41 уходит смесь паров растворителя и водяного пара. После охлаждения и конденсации эта смесь поступает в емкость 43, где происходит расслаивание жидкости. Верхний слой влажного растворителя (содержание воды 0,6 – 0,8 %) насосом 14 перекачивается в емкость 9. Нижний водный слой, содержащий до 15 % растворенного МЭКа, насосом 44 подается в кетоновую колонну 16.

В низ этой колонны подают острый пар. С верха этой колонны отгоняется низкокипящая азеотропная смесь, обогащенная МЭКом, которая конденсируется в холодильнике 15 и поступает обратно в емкость 43, где происходит ее расслаивание. Вода из низа колонны 16 отводится в канализацию.

3.2. Основное оборудование установки депарафинизации

Кристаллизаторы. На установках депарафинизации эксплуатируют различные типы кристаллизаторов, отличающихся конструктивным оформлением, величиной поверхности охлаждения, типом привода скребков. Поверхность теплообмена колеблется от 70 до 100 м2. В настоящее время разрабатываются кристаллизаторы с поверхностью до 340 м2.

В аппаратах типа «труба в трубе» (рис. 75) по внутренним трубам движется охлаждаемый раствор масла, из которого выкристаллизовываются твердые углеводороды, а по межтрубному пространству противотоком движется охлаждающая среда (фильтрат депарафинированного масла).

Рис. 75. Кристаллизатор типа «труба в трубе»: 1 – секция кристаллизатора, 2 – емкость хладагента, 3 – электродвигатель, 4 – редуктор, 5 – передача цепная, 6 – волнистый (линзовый) компенсатор

В кожухотрубчатом кристаллизаторе (рис. 77) по трубам также движется охлаждаемый раствор масла, а в межтрубное пространство подается испаряющийся хладагент с низкой температурой кипения (аммиак, пропан, этан).

Как правило, кристаллизаторы «труба в трубе» используют на первой ступени (в качестве регенеративных). В них за счет противоточного движения раствора и хладагента обеспечиваются более мягкие условия охлаждения, что очень важно на начальных стадиях кристаллизации. В кожухотрубчатых кристаллизаторах режим охлаждения более жесткий, поэтому их целесообразно использовать на заключительных стадиях процесса, когда допускаются большие скорости охлаждения.

Кристаллизатор типа «труба в трубе» в зависимости от поверхности охлаждения включает от 10 до 48 элементов «труба в трубе» (поверхность охлаждения от 70 до 340 м2). Элементы укреплены на металлоконструкции, состоящей из стоек с горизонтальными связями из швеллеров и уголков.

Элемент «труба в трубе» (рис. 76) состоит из наружной трубы 1 диаметром 219 х 8 мм и внутренней трубы 2 диаметром 168 х 10 мм. Общая длина элемента 13,8 м.

Рис. 76. Элемент секции кристаллизатора1 – труба наружная, 2 – корпус внутренней трубы, 3 – вал, 4 – скребок, 5 – «палец», 6 – пружина, 7 – подшипник скольжения, 8 – болт, 9 – стержень

Во внутренней трубе для удаления оседающего на стенке парафина устанавливают полый вал 3 со скребками 4. Из-за значительной длины трубы вал выполняют из отдельных частей длиной по 2,7 м. Отдельное звено вала представляет собой трубу 3 с вваренными в нее цилиндрическими втулками для установки скребков 4. Звенья вала соединяют вставным стержнем 9 и болтами 8.

Скребки вставлены в пазы «пальцев» 5 и могут быть приварены к ним. «Пальцы» свободно входят в цилиндрические втулки вала и распираются пружинами 6. Это создает возможность перемещения скребка в радиальном направлении. Длина скребка от 545 до 600 мм. Скребки на валу располагаются попарно под углом 90º относительно друг друга. Каждый скребок имеет три подпружиненных опоры, а каждое скребковое устройство 24 пары скребков.

Вал устанавливают внутри трубы в подшипниках скольжения 7. Передние концы валов, выходящие через двойники, уплотняются сальниковыми устройствами. Разность тепловых расширений внутренних и наружных труб воспринимается волнистыми (линзовыми) компенсаторами. Привод валов осуществляется от мотор-редуктора через ведущую звездочку. Ведомые звездочки крепятся на приводных валах скребковых устройств. Для передачи крутящего момента используются двухрядная цепь. Передача крутящего момента от ведомой звездочки к скребковому устройству каждой секции осуществляется через два болта М12, соединенных со ступицей вала. Общая длина 13125 мм, частота вращения 25 – 32 об/мин.

Наружные трубы также соединены при помощи штампованных переходников в общий змеевик. Материал труб 09Г2С. Масса кристаллизаторов составляет 18,1÷24,6 т.

Вне корпуса аппарата в каком-либо звене привода (шестерне, муфте) предусматривают предохранительный штифт, который срезается при чрезмерных усилиях, возникающих при заедании или других неполадках в скребковом устройстве. В результате отключается скребковое устройство одной трубы, а остальные продолжают работать.

Кожухотрубчатый кристаллизатор с поверхностью охлаждения 90 м2 (рис.77) состоит из двух рядов горизонтальных кожухотрубчатых секций, над которым расположен аккумулятор испаряющегося хладагента (аммиака или пропана) 2.

В каждом ряду размещены одна над другой две секции 2, соединенные переточными устройствами. В каждой секции установлено семь труб диаметром 168 х 8 мм со встроенными скребковыми устройствами. Шесть труб размещены по окружности диаметром 580 мм и одна в центре кожуха диаметром 800 мм. Все трубы закрепляются в трубных решетках. Трубы соединены между собой передними и задними переходниками на фланцевых соединениях, образуя непрерывный змеевик. Материал кожуха и труб 09Г2С. Масса аппаратов достигает 21,2 – 21,7 т .

Каждая секция имеет автономный привод от мотор-редуктора (рис. 78).

Скребковое устройство получает вращение через шестеренчатую передачу, уплотнение валов осуществляется с помощью сальниковых уплотнений.

Рис. 77. Кристаллизатор кожухотрубчатый: 1 – секция кристаллизатора, 2 – емкость испаряющегося хладагента, 3 – мотор-редуктор

Рис. 78. Узел привода кожухотрубчатого кристаллизатора:

1 – крышка, 2 – шестерня, 3 – муфта привода, 4 – палец, 5 – сухарь, 6 – втулка распорная, 7 – вал, 8 – крышка сальника, 9 – кольцо сальника, 10 – кольцо, 11 – пружина, 12 – втулка, 13 – корпус подшипника, 14 – шайба, 15 – колесо зубчатое, 16 – штифт, 17 – ступица, 18 – планка стопорная

Барабанные вакуум-фильтры. В эксплуатации находятся фильтры различной конструкции с поверхностью фильтрования 50 – 80 м2, диаметром барабана 3000 – 3450 мм, длиной барабана 5300 – 10100 мм и регулируемой частотой вращения (0,3 – 1,3 об/мин). Схема одного из таких барабанных вакуум-фильтров приведена на рис. 79.

Фильтрующая поверхность размещена на горизонтальном барабане 3, который медленно вращается на двух цапфах от привода 1. На боковой поверхности барабана крепится металлическая сетка и фильтровальная ткань 4, обмотанная проволокой в направлении по спирали.

Изнутри по образующим фильтрующая поверхность разделена продольными перегородками на отдельные секции в количестве от 12 до 32 штук. Каждая из секций соединена отводными трубками 5 с вращающимся диском 7, укрепленным на цапфе. Число отверстий в диске равно числу секций барабана. К диску прижата пружинами неподвижная распределительная головка со сменным диском 8.

Рис. 79. Барабанный вакуум-фильтр с наружной фильтрующей поверхностью:

1 – привод, 2 – корпус, 3 – барабан, 4 – фильтровальная ткань, 5 – отводные трубки, 6 – коллектор для подачи промывной жидкости, 7 – вращающийся диск, 8 – сменный диск распределительной головки.

I – суспензия, II – осадок, III – газ для отдувки осадка, IV – инертный газ, V – промывной фильтрат, VI – фильтрат

Распределительная головка разделена на три камеры, соответствующие основным стадиям процесса: фильтрованию, промывке и продувке. Каждая камера имеет штуцер и через щель в сменном диске 8 распределительной головки сообщается с соответствующим участком фильтрующей поверхности. Нижняя часть барабана погружена в суспензию, которая постоянно подается в корыто фильтра.

Над барабаном установлен коллектор 6 для подачи промывной жидкости. Сбоку размещен нож для срезания осадка с поверхности фильтра и шнек для удаления осадка из фильтра.

Отличительной особенностью барабанных вакуум-фильтров, используемых для депарафинизации, является полная герметизация кожуха, а также отсутствие в корыте качающейся мешалки для перемешивания суспензии. Внутри кожуха для исключения возможности проникновения воздуха поддерживается небольшое избыточное давление, создаваемое инертным газом (азотом). Выгрузка осадка из фильтра осуществляется при помощи специального шнека.

На рис. 80 представлен сборочный чертеж барабана.

Рис. 80. Барабан вакуум-фильтра:

1 – обечайка, 2 – кольца жесткости, 3 – ребра, 4 – стенки боковые, 5 – цапфы, 6 – сетка крупная, 7 – сетка мелкая, 8 – ткань фильтровальная, 9 – прутки, 10 – проволока

Он представляет собой горизонтальную цилиндрическую обечайку 1 наружным диаметром 3000 мм. Внутри обе чайка укреплена кольцами жесткости 2, снаружи по образующей по всей длине барабана приварены ребра 3 с пазами в виде ласточкина хвоста, которые служат для закрепления фильтрующей ткани. С торцов барабан закрыт стенками 4, к которым приварены удлиненные цапфы 5. Стенки укреплены радиальными ребрами жесткости.

На поверхности барабана уложена сетка 6 из легированной стальной проволоки диаметром 4 мм; размер ячеек 80Х80 мм. Сетка образует полости для сбора фильтрата. Поверх сетки 6 размещена мелкая сетка 7 из фосфористо-бронзовой проволоки диаметром 0,9 мм с мелкой ячейкой, служащая для поддержания фильтровальной ткани. На эту сетку уложена фильтровальная ткань 8, заклиненная в пазах ребер прутками 9. Сверху ткань прижата спирально навиваемой на барабан проволокой 10 диаметром 2 мм. Для навивки проволоки служит специальное приспособление, состоящее из ходового винта, установленного вдоль барабана и перемещающейся по нему каретки.

Внутри барабана расположена система распределительных труб, связывающих поверхность обечайки барабана с вращающимся диском, который приварен к торцу правой цапфы. Барабан опирается двумя цапфами на подшипники скольжения, установленные вне корпуса фильтра.

В местах выхода цапф из корпуса предусмотрены сальниковые уплотнения. Левая цапфа оканчивается червячным колесом привода барабана. На правой цапфе установлена распределительная головка барабана (рис. 81). В верхней части корпуса над барабаном расположен ряд труб, по которым подается растворитель для промывки осадка. По образующей барабана установлен нож для съема осадка, который затем попадает в шнек и выводится через штуцер.

Часть нижней поверхности барабана погружена в суспензию. При помощи распределительной головки фильтра с поверхности барабана отводят фильтрат и растворитель (промывочную жидкость) и подводят инертный газ для отдувки осадка.

Распределительная головка представляет собой неподвижную коробку, прижатую своей торцовой поверхностью к вращающемуся диску правой цапфы 2, от которой отходят распределительные трубы 1. Для герметичности между головкой и вращающейся цапфой установлен сальник 4. Прижатие головки регулируют тремя пружинами 3.

Рабочая полость головки, выполненная в виде кольца, разделена мостиками 5 на четыре части, соответствующие рабочим зонам барабана. От распределительной головки из соответствующих частей выводятся: фильтрат через штуцер 6 в зоне фильтрования; растворитель (промывочный) с остатками фильтрата через штуцер 10 в зоне промывки, инертный газ с остатками растворителя через штуцер 8 в зоне просушки. По трубам 9 и 7 подается инертный газ для продувки фильтровальной ткани и отдувки осадка при его съеме.

Рис. 81. Распределительная головка вакуум-фильтра:

1 – трубы распределительные, 2 – диск вращающийся, 3 – пружины прижимные, 4 – сальник, 5 – мостик, 6 – штуцер для вывода фильтрата, 7 и 9– трубки подачи инертного газа, 8 – штуцер для вывода инертного газа, 10 – штуцер для вывода растворителя с остатками фильтрата

Корпус фильтра работает с небольшим избыточным внутренним давлением инертного газа (около 0,01 МПа), что предотвращает возможность попадания в него воздуха с образованием взрывоопасной среды. Нож и проволока, прижимающая ткань, изготовлены из специального металла, не вызывающего искрообразования.

Барабан фильтра приводится во вращение при помощи электродвигателя во взрывобезопасном исполнении через бесступенчатый вариатор.

Шнек, удаляющий парафин, имеет отдельный привод от электродвигателя через зубчатые передачи.

 

Просмотров: 1 171

Где на самом деле делают «настоящие» импортные масла? | Об автомобилях | Авто

Автомобилисты привыкли скептически относиться к российским производителям масел. Такое отношение небезосновательно. Десятилетие назад приходилось сталкиваться с ситуациями, когда даже хорошие продукты теряли в качестве при разливе в России. Был велик риск получить обыкновенную подделку. Кроме того, памятны случаи, когда на прилавках магазинов появлялись масла «известных» японских брендов с неизвестными иероглифами на банках. Однако на поверку выходило, что это всего лишь мимикрирующие под японских производителей фирмы, которые имели заграничную регистрацию в каком-нибудь ангаре в порту, а содержимое в банки разливали в России.

Между тем ситуация сейчас кардинально меняется. Крупные производители теперь строят собственные производства в России. Стоит ли им доверять и как это отражается на качестве?

Зачем проверяют уровень масла и как это правильно делать? →

Total

В 2018 году в селе Ворсино в Калужской области был открыт собственный завод Total. Это первый завод компании в России, и его постройка заняла два года. Здесь производится основная продукция Total и разливаются смазочные материалы, поступающие в Россию с европейских заводов.

Предприятие расположено на участке площадью 7 га и рассчитано на производство 40 000 тонн автомобильных и промышленных смазочных материалов в год с возможностью увеличения до 70 000 тонн.

Завод Total Vostok выпускает весь спектр продукции Total и ELF, включая Total Quartz для легковых автомобилей, ассортимент Total Rubia для коммерческого транспорта, а также полный список промышленных гидравлических масел Azolla и Equivis, Seriola. Изготавливаются в Ворсино и индустриальные масла Carter, а также линия смазок Fuel Economy, которые предназначены для коммерческих автомобилей и внедорожников.

Благодаря открытию нового завода в Ворсино концерну Total удалось локализовать производство для российского рынка и снизить зависимость от импорта.

ROLF

Один из самых активных стартов продаж проводит бренд ROLF. Компания именует себя немецкой, хотя на прилавках крупных магазинов автозапчастей в Германии ее продукцию отыскать трудно. Изготавливают масло ROLF на предприятии в Обнинске, хотя на качество это не влияет. Различные независимые проверки выявили неплохие свойства этих масел. При производстве моторных масел используются иностранные присадки, в том числе американские. Базовая основа у них отечественная, она покупается у крупных российских нефтепереработчиков. Чаще всего производители разных моторных масел пользуются присадками Afton, Infineum, Lubrizol, Texaco и Chevron.

Mobil

Известный бренд Mobil пока не имеет своих производств в России. Чтобы определить страну производителя, необходимо посмотреть на канистру и найти матричный код. Первая латинская буква в этом коде будет означать страну изготовления этого масла:

N — Наантали, Финляндия;

J — Порт Жером, Франция;

P — Пурфлит, Великобритания;

H — Гамбург, Германия;

E — Пернис, Голландия;

G — Гравеншон, Франция;

U — Уддевалла, Швеция;

S — Сервибурну, Турция.

В большинстве случаев на прилавках магазинов в России встречаются масла из Финляндии, Франции и Турции.

Shell

Масла Shell для отечественного рынка давно изготавливаются под Тверью, в Торжке. Завод был заложен в 2009 году, а осенью 2010 года начата программа по набору квалифицированного персонала для работы на предприятии. В 2012 году завод вступил в эксплуатацию. Мощность производства — 200 миллионов литров (180 000 тонн) смазочных материалов в год. Сегодня ассортимент выпускаемой в Торжке продукции насчитывает более 60 позиций, в том числе линейки Shell Helix, Shell Rimula, Shell Spirax, Shell Tellus и Shell Omala, а также моторное масло Shell Helix Ultra с технологией PurePlus на основе базового масла из природного газа.

Castrol

Новокуйбышевский завод масел и присадок, предприятие нефтяной компании «Роснефть», производит судовые моторные масла под маркой Castrol. Правда, автомобильные масла до сих пор поставляются из Европы, в том числе из Германии, Австрии, Финляндии, Франции, Швеции и Италии.

Контроль качества

Если завод находится за границей, это еще не признак качества. Часто у российских масел основа и присадки лучше, чем у иностранных. Недавно возведенные в России заводы оснащены современным оборудованием и пользуются передовыми технологиями, начиная с автоматизации смешивания компонентов и налива готового продукта и заканчивая контролем качества в лабораторных условиях. Процесс производства и качество продукции не зависят от расположения завода, так как внутри транснациональных компаний одинаковые системы контроля и оценки производства.

Также развитая автомобильная и железнодорожная инфраструктура позволяет осуществлять поставки смазочных материалов из России не только на внутренний рынок, но и на экспорт, например в Центральную Азию и Белоруссию.

Сырье для производства масел — Справочник химика 21

    Увеличение выхода вакуумных дистиллятов, составляющих основу сырья для производства масел, процессов каталитического крекинга [c.7]

    Основное назначение процесса деасфальтизации гудрона парафинами (чаще пропаном, иногда бутаном или пентаном) — получение деасфальтизата, являющегося сырьем для производства масел и установок каталитического крекинга и гидрокрекинга. Остаток деасфальтизации в некоторых случаях соответствует требованиям стандарта на битум, а чаще era используют как компонент сырья битумного производства. 

[c.39]


    Игровская нефть не является перспективным сырьем для производства масел при существующей технологии их получения. [c.92]

    Масляные дистилляты нефтей западной части Башкирии отличаются от масляных дистиллятов нефтей восточной части более низкими пределами плотности и вязкости, большим содержанием парафина и заметно меньшим содержанием серы. По этой причине нефти западного района являются лучшим сырьем для производства масел. 

[c.76]

    Сероорганические соединения содержатся почти во всех нефтях. Их содержание колеблется в очень широких пределах от сотых долей процента до 5—7% (на серу). По содержанию общей серы нефти делят на четыре группы [ 19, с. 331] несернистые (менее 0,2% серы) малО сернистые (0,2— 1% серы) сернистые (1—3% серы) высокосернистые (более 3% серы). Добыча сернистых нефтей во всем мире непрерывно растет, и в настоящее время они являются основным сырьем для производства масел. [c.22]

    Повышение температуры процесса препятствует образованию эмульсий и способствует интенсификации гидролиза. В зависимости от вязкости масла температуру выбирают в интервале от 35 до 65 °С. Очистку регенерированных масел, в которых содержится значительно меньше нафтеновых кислот, чем в сырье для производства масел, ведут при 70—80 °С. 

[c.116]

    Многие показатели качества (вязкость, индекс вязкости, нагарообразующая способность, температура вспышки и др.) товарных масел, а также технико-экономические показатели процессов очистки масляного производства во многом предопределяются качеством исходных нефтей и их масляных фракций. Поэтому в процессах ВТМ, по сравнению с вакуумной перегонкой топливного профиля, предъявляются более строгие требования к четкости погоноразделения и выбору сырья. Наиболее массовым сырьем для производства масел в нашей стране являются смеси западно-сибирских (самотлорская, усть-балыкская, соснинская) и волго- уральских (туймазинская, ромашкинская, волгоградская) нефтей. Для получения масел высокого качества из таких нефтей рекомендуется получать узкие 50-градусные масляные фракции (350-400 400-450 и 450-500 С) с минимальным налеганием температур кипения смежных дистил- 

[c.229]


    Одним из важных видов химического сырья является природный газ, содержащий до 98% метана. Природный газ в химической промышленности используется для производства органических продуктов и аммиака. Древесина и древесные отходы—источник получения целлюлозы, этилового спирта, уксусной кислоты, фурфурола и ряда других продуктов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т.п. 
[c.30]

    Еще в 70-х годах прошлого столетия великий русский ученый и пламенный патриот Дмитрий Иванович Менделеев указывал, что сжигание в топках нефти и мазута является преступлением, так как эти продукты — прекрасное сырье для производства масел. Предложение Д. И. Менделеева о переработке тяжелых кавказских нефтей на смазочные масла было осуществлено русскими инженерами-нефтепромышленниками. Первые масляные заводы были построены В. И. Рагозиным в 1877 г. и 1879 г. в Балахне (Горький). Русские смазочные масла быстро зарекомендовали себя на мировом рынке более высококачественными, чем американские. I 

[c.4]

    Минеральные базовые масла

характеристики, технология и процесс изготовления

Производство моторного масла началось еще в конце 19-го века. Родоначальником данного процесса считается Джон Эллис, работавший над смазочными материалами для двигателя автомобиля. Сегодня различные присадки для производства моторных масел настолько расширили ассортимент, что разобраться в нем быстро не получится. Так как же производится данное сырье и в чем его ценность?

Сырье

Производство моторного масла, как и любого другого, не обходится без сырья – того вещества, из которого получается конечный продукт. Минеральное масло изготавливается из нефти. Но до того, как она попадает на завод смазочных материалов, ей необходимо пройти ряд очисток на нефтеперерабатывающих предприятиях. В первую очередь из нефти выпариваются самые легкие бензольные соединения — это спирт, керосин, бензин различного октанового числа. И вот когда нефть после многочисленных обработок превращается в мазут, она попадает на линию производства масла.

Казалось бы, мазут настолько густой, что является конечным продуктом переработки нефти, однако, пройдя вакуумную очистку, он расщепляется на минеральное масло и гудрон. Вот как раз гудрон и является остатком от переработки сырой нефти. Но и он не пропадает, а идет на производство асфальта по всей стране. Таким образом, производство моторных масел в России косвенно помогает развивать строительство автодорог.

Первый этап производства

На первом этапе производства моторного масла происходит процесс гидроконферсии с участием водорода. Частицы этого газа очищают базовое сырье от примесей азота и сернистых соединений. Масло, полученное таким способом, относится к 2-й группе. Это отличает моторное масло российского производства от других продуктов, ведь не все компании применяют в производстве гидроконферсию. Кстати, в ходе данного процесса масло приобретает свой цвет, прозрачность и специфический запах.

Второй этап производства

Производство моторного масла на втором этапе включает в себя добавление в продукт соответствующих присадок. Так как требования к нему предъявляются разные, в соответствии с устройством двигателей автомобилей, а также условий их эксплуатации, существует множество сортов. Например, в летний период рекомендуется применять масло большей вязкости, а в зимнее время, соответственно, с меньшей. Для дизельных двигателей требуется один тип моторного масла, для бензиновых — другой, а для автомобилей, работающих на газе, — третий.

Все эти сорта можно получить, добавив в базовое сырье соответствующие присадки. Для каждой присадки требуется своя температура растворения. Некоторым достаточно 0 градусов, другим 100, а третьи растворяются только при 120 или даже 150 градусах. Но при этом многие присадки разрушаются при экстремально высоких температурах. То есть пока растворяется присадка, требующая 120 градусов, другая может начать растворяться уже при 100 градусах. Это обстоятельство заставляет производителей добавлять присадки по одной, попеременно то нагревая, то остужая масло.

Устройства компаундирования

Современные заводы по производству моторного масла используют различные устройства компаундирования, то есть смешивания базового сырья с присадками, ведь обычного нагрева для этого недостаточно.

Смешивается масло в специальных баках. При этом используется либо медленная мешалка, либо быстрый вентилятор, либо воздух, подаваемый под давлением.

У каждого метода есть свои недостатки и достоинства, используемые для производства того или иного типа. Например, если в масло входит компонент, легко расщепляемый воздухом, вплоть до самовозгорания, то, естественно, применяется метод перемешивания с помощью вентилятора.

Также имеет значение, какая вязкость у получаемого масла, от этого зависит скорость перемешивания.

Компоненты присадок добавляются специальными дозаторами во избежание нарушения пропорций. На современных производствах моторного масла установки по компаундированию полностью автоматические. Заводы покупают их у известных производителей, таких как, например, SiemensandHalske. Или изготавливают их самостоятельно.

Виды присадок

Для каждого типа масла применяется тот или иной набор присадок. Их может быть не 2 и не 3, а гораздо больше. От количества зависят характеристики масла и его качество.

Например, в стандартное минеральное масло могут входить: H-парафин, циклопарафины, поликонденсированные нафтены, моноароматические и полиароматические соединения, изопарафин.

В состав высококачественного продукта включается изопарафин с разветвленными цепями. И это далеко не полный список ингредиентов, ведь многие из них являются коммерческим секретом производителя. В этом смысле технология производства моторного масла сродни, например, производству кока-колы — ее состав тоже известен единицам специалистов и тщательно охраняется.

Качества современных продуктов

Процесс производства моторного масла стал настолько технологичным, что получившийся продукт на порядок лучше того, что использовался в автомобилях еще 10 или 20 лет назад.

Современное масло обладает высокой окислительной стабильностью, что делает его долговечнее. И если раньше масло нужно было менять каждые 3-5 тысяч километров пробега, то теперь оно выдерживает и 7, и 10 тысяч.

Другое новшество – масло стало выдерживать более высокие температуры. Это приводит к тому, что в двигателе не образуется нагар и загрязнения. Вязкость стала стабильной, не зависящей от температуры окружающей среды и двигателя. Это дольше защищает движущиеся части двигателя и сказывается на экономии топлива.

Современное масло замерзает только при экстремально низких температурах. Поэтому двигатель, в который залит качественный продукт, легко запускается даже в самых суровых погодных условиях.

Производство моторного масла в России

Моторное масло, производимое в Российской Федерации, по своим характеристикам ничем не уступает своим аналогам в других странах. При этом оно на порядок дешевле. Это происходит по многим причинам. Во-первых, сырье для производства добывается Роснефтью по всей России и предоставляется для заводов по низким ценам. Специалисты для заводов готовятся в России, например, на Новокуйбышевском нефтеперерабатывающем комбинате работают выпускники Самарского государственного университета.

Недалеко от упомянутого завода располагается Средне-волжский научно-исследовательский институт по нефтепереработке, то есть процесс производства постоянно улучшается силами специалистов данного заведения.

В результате автомобильное масло «Роснефть» рекомендовано для продукции заводов АвтоВАЗ и Волжского автозавода. Данное масло способно не терять свои свойства на протяжении 15 000 пробега. При этом его цена гораздо ниже зарубежных аналогов. Ведь весь процесс производства проходит на одном заводе, а значит, нет дополнительных наценок. Даже пластиковые бутылки для упаковки готового масла производятся на том же самом заводе, а не покупаются у другого предприятия.

Отработанное масло и экология

С отработанным машинным маслом ситуация в России обстоит не очень хорошо. На сегодняшний день только 15 % отработанного масла попадает в переработку, остальное сливается в грунт. Это недопустимо для жизни всей биосферы планеты. Отработанное масло, попадая в почву, проникает в грунтовые воды и выходит в реки и озера. Рано или поздно, его присутствие окажет на людей, пьющих такую воду, смертельный эффект. Понимая это, например, в Германии, перерабатывают почти 55 % всего отработанного масла.

И если в быту можно использовать небольшое количество отработанного масла, например, для смазки велосипеда или бензопилы, то на больших производствах его используют в гидравлических системах, трансмиссиях сельхозтехники, для обработки деревянных шпал и консервации техники в армии. То есть способов применений много, но зачастую получается, что вторичная переработка обходится дороже нового товара. Отсюда и нежелание вторичного использования сырья. Человек, думая о своем обогащении, часто забывает обо всем другом.

Заключение

Если у пользователя накопилось слишком большое количество отработанного масла, его можно сдать в пункты приема именно такого масла, открытых по всей стране. Оттуда оно попадает на заводы, где после обработки и очистки из него могут сделать топливо, или оно находит другие применения.

К сведению, способами физической и химической очистки отработанного масла занимаются те же самые научно-исследовательские институты, что и занимались его производством. Так что для них в данной задаче нерешаемых вопросов нет.

Вся правда о маслах — интересные разоблачения производителей

В нашей новой статье мы бы хотели рассказать вам больше о моторных маслах, раскрыть вам всю правду о производителях и о многом другом. Давайте сразу обозначим некий рейтинг самых популярных масел: Лукойл, Shell, Mobil, LIQUI MOLY, Castrol и другие.

Многие автомобилисты не знаю какое масло они заливают. Они выбирают его только по рекомендации.

Из чего состоит масло?

Масло состоит из базовых масел на 80%, а на 20% из присадок.

Базовые масла делаться на 5 групп. Из 1-х групп делаются минеральные масла. 2-я группа — полусинтетика. 3-я — синтетика. 4-я — ПАО. 5-я — эстеры.

Присадки по своим свойствам бывают:

  • антиоксиданты
  • депресанты
  • дисперсанты
  • противоизносные
  • противозадирные
  • модификаторы вязкости
  • защита уплотнений
  • ингибиторы коррозии
  • модификаторы трения
  • антипенные
  • детергенты

Из чего складывается цена на масло?

Цена на масло — это непосредственно само производство, базовые масла, упаковка, налоги и амортизация, транспортировка и доставка, классификации (API, SAE), реклама и бренд.

Чем чаще показывается реклама по телевидению определенного бренда, тем он дороже. Чем чаще вы видите на газличных гоночных авто на соревнованиях наклейки Mobil, Shell, тем дороже будет стоить масло данного бренда.

Кто производит присадки для масла?

Присадки для масел производят всего лишь 4 фирмы: Lubrizol, Infineum, Afton, Chevron. Так что нельзя говорить о том, что у Mobil свои присадки, а у Shell свои. Они максимум могли купить присадки в один год у одного и того же производителя.

Кто производит базовые масла?

Лидером по продаже базовых масел во всем мире является компания ExonMobil. На фото ниже вы можете видеть рейтинг производителей базовых масел первой и второй категории.

Базовые масла 3-й категории из которых изготавливаются синтетические масла больше всего в мире производит компания SK Lubricants. Именно та, которая производим масло ZIK. И клиентами компании ZIK являются практически все производители, которых вы знаете: Exon Mobil, Shell, Castrol, BP, Elf. Даже если вы не покупаете ZIC масло, то так или иначе оно залито у Вас в двигателе в виде базового масла.

А если учесть, что производитель покупает еще и синтетические присадки в определенных фирмах, то, например, в один год такие бренда как Мобил, ЗИК и Кастрол покупали присадки у одной и той же фирмы, а также базовые масла они использовали одни и те же. Но цена на все 3 бренда совершенно разная.

Оригинальные масла

Мало кто задумывался что залито в канистре оригинального масла. Ведь ни одна из фирм производителе автомобилей не производит масло, она даже не смешивает их с базовых масел и присадок. Она его просто закупает. Так от куда же берется это масло? И это огромный секрет, ни один из автопроизводителей не расскажет, где они закупают масло.

Узнать это не так уж и сложно. Когда к официальным дилерам приходит масло, вместе с ним и сертификат соответствия. Как раз в таком сертификате мы и узнаем чье же масло используется в качестве оригинального.

Оригинальное масло — производитель

  • Mitsubishi (все) — Eneos
  • TOYOTA (все) — MOBIL
  • Nissan (5w30) — MOBIL
  • Nissan (5w40) — Total
  • Mazda — Total
  • Honda Ultra — Idemitsu или ZIC
  • Subaru — Idemitsu
  • SsangYoung — Lukoil
  • General Motors — в Корее ZIC
  • General Motors — в Европе Mobil
  • General Motors — в России Лукойл

Так что покупая масло в оригинальных упаковках, вы просто переплачиваете за бренд, который там нарисован. В новые иномарки, которые производятся в России заливается масло Лукойл (задумайтесь). И ничего в этом плохого нет. А тем кто говорят, что они заливают то же масло, что и с завода, то посмейтесь им в лицо.

Интересные истории о производителях масел

Выходец из Казахстана зарегистрировал торговую марку в Германии, построил завод в Литве (г. Клайпид, 800 км от Питера) и производит там масло MANNOL под рекламой немецкого качества, хотя к Германии, как вы видите масло отношения не имеет.

Масла ROLF позиционирует себя как немецкое качество. Если вы зайдете на сайт масла РОЛЬФ. Вы увидите грозного немецкого мужика, который держит канистру с немецким флагом. Далее смотрим, что вся продукция Rolf изготовлена в жестяной таре, которая запрещена в Германии. Копируем адрес производителя на сайте и переходим по нему. Перейдем на сайт данного завода, адрес которого указан на сайте ROLF, и увидим там, что данный завод производит все что угодно, кроме моторных масел. Так вот Rolf — это полностью российское масло, произведенное в Обнинске.

История с Японским качеством ENEOS масло. В Японии данное масло выпускается в пластмассовых канистрах. А в России вы могли видеть в жестяных канистрах, которое к Японии не имеет никакого отношения. 20 лет назад предприниматель из Владивостока выкупил производство и продажу масел ENEOS на территории России. Закупил жестяную тару там же, где и закупается ZIC. Наладил поставки по всей России. Производство данного масла отлажено в Корее г. Мичанг. Основной слоган — ENEOS первое масло Японии. Но в Российских реалиях данное масло к Японии не имеет никакого отношения.

Все масло Shell, которое продается в России производится в г. Торжок.

Технология производства синтетических моторных масел. — МегаЛекции

В состав моторного масла входит основа (базовое масло) и присадки. Качество масла определяется химическим составом основы, а присадки служат для изменения свойств базового масла, и способны значительно улучшить моторное масло, несмотря на качество основы. Но в процессе использования масла длительное время основным показателем качества становится основа, поскольку присадки за это время меняют свои свойства. В этой публикации рассмотрим базовые масла для производства моторных масел.

Базовые масла для производства моторных масел могут быть трёх видов:

минеральные,
синтетические,
полусинтетические.

Если ориентироваться на Американский институт нефти (API), то можно сказать, что базовые масла имеют пять категорий.

Первая группа – основа, созданная при помощи депарафинизации и селективной очистки.
Вторая группа – основа, прошедшая гидрообработку, за счёт чего уменьшено количество парафинов и ароматических соединений.
Третья группа – основа, полученная с помощью метода каталитического гидрокрекинга, таким образом, индекс вязкости был уменьшен.
Четвёртая группа – основа создана на полиальфаолефинах (ПАО), что даёт повышенную окислительную стабильность и увеличивает индекс вязкости.
Пятая группа – группа базовых масел для производства моторного масла, в чей список входят основы, не вошедшие в вышеперечисленные категории. Базовые масла на синтетической и натуральной основе.

Минеральная основа для производства моторных масел является продуктом перегонки нефти, и естественно, что ее качество и химический состав, прежде всего, зависят от тех же показателей нефти, и от того, какие технологии были использованы для ее очистки.

Улучшение качества базовых минеральных масел решается двумя способами.

Первый способ подразумевает частичную очистку базового масла для производства моторных масел от азота, кислот, смол, серы, и затем добавляются присадки. При таком методе получается базовое масло не очень высокого качества.
Во втором способе проводится полная очистка основы, и дополнительно производится модификация с использованием метода гидрокрекинга. Такой способ позволяет получить базовое масло высокого качества, которое можно использовать в условиях эксплуатации автомобиля на высоких скоростях, температурах и нагрузках.



В плане цены такое базовое масло для производства моторных масел ближе к минеральным основам, а качество приближено к синтетическим.

Гидрокрекинговое базовое масло больше походит на минеральную основу по методу, используемому для его получения. Получают его из нефти, и оно проходит обработку методом гидрокрекинга. Первичная обработка базового гидрокрекингового масла аналогична той, что применяется в случае изготовления минерального масла. Также происходит очистка от битумных веществ, азота и серы, ароматических полициклических соединений. При помощи депарафинизации происходит удаление парафинов. Далее проходит гидроочистка базового масла от ненасыщенных углеводородов. И после неё происходит более тщательная очистка с помощью гидрокрекинга, при котором совершается дополнительное удаление азотистых и серных соединений.

Этот процесс построен на использовании крекинга (разрыва) длинной молекулярной цепочки на более короткие. А затем происходит насыщение водородом (гидрирование) коротких молекул. Поэтому этот способ получил название «гидрокрекинг». Понятно, что гидрокрекинг — это процесс синтеза, при котором происходит создание абсолютно другого соединения из одного и того же исходного сырья – нефти.

Часто гидрокрекинг носит название НС – синтеза. При этом методе получения базового масла для производства моторных масел возникает снижение некоторых полезных свойств. Так, нафтеновые и жирные кислоты, смолы, удалённые в процессе изготовления, снижают его смазывающую способность. Ценность представляют и отдельные соединения азота и серы, поскольку они способны усилить анти-окислительные свойства масла. Поэтому подобная очистка базового масла способна не только улучшить качество масла, но и ухудшить его показатели по некоторым параметрам. Для того чтобы улучшить качество базового масла после глубокой очистки применяются присадки.

Можно сказать, что базовое масло для производства моторных масел, изготовленное с применением гидрокрекинга – это продукт переработки нефти, в процессе которого удаляются все вредные примеси, а недостающие свойства компенсируются за счёт внесения добавки в виде присадки. Поскольку удалить вредные примеси достаточно сложно, то в конечном результате, при использовании такого базового масла, возможность возникновения образования нагара и коррозии значительно больше, по сравнению с синтетическим маслом.

Гидрокрекинг представляет собой каталитический процесс с применением никеля, а для очистки синтетического базового масла для производства автомобильных моторных масел применяется углерод, и поэтому оно не содержит примесей никеля. Это масло схоже по своим свойствам с синтетическим базовым маслом, однако процесс старения происходит быстрее. Можно упомянуть и о таком свойстве масла, как замерзание, которое у синтетического масла проходит при более низкой температуре. Есть и преимущества перед синтетическим базовым маслом, заключающиеся в устойчивости к процессу окисления и повышенной вязкости, поэтому оно способно в лучшей степени защитить двигатель от износа.

Интересен тот факт, что большинство масел для двигателя автомобиля, изготовленных с помощью метода гидрокрекинга, считается синтетическими или полусинтетическими маслами. Подобной позиции придерживаются наиболее крупные мировые производители моторного масла. Гидрокрекинг используют — Shell (кроме 0W-40), BP (кроме Visco 7000), отчасти Fuchs, Esso, Mobil, Chevron, Castrol, а все виды масла от южно-корейской фирмы ZIC вообще изготовлены только с помощью этого метода.

Полусинтетические базовые масла представляют собой смесь синтетических масел и минеральных, причем содержание синтетического масла может составлять 20 – 40 %. Содержание синтетического базового масла в конечном продукте может быть каким угодно, поскольку определённых требований или каких-то норм, как таковых, не существует. Как впрочем, не существует никаких нормативов использования типов (смотрите выше группы масел 3,4) основы для получения полусинтетического масла.

Полусинтетические масла по своей технической характеристике являются чем-то средним между синтетическим и минеральным маслом, соответственно, по своим показателям качества они уступают синтетическим базовым маслам и превосходят минеральные масла. Стоимость этих масел значительно ниже, чем синтетических.

Если рассматривать технические свойства тех или иных базовых масел для производства моторных масел, то стоит упомянуть и синтетическое масло. Основным его достоинством можно считать выигрышное соотношение температурного режима застывания масла и его вязкости.

Первое, на что следует обратить внимание, это то, что синтетическое масло застывает при температуре воздуха минус 50-60 градусов, и одновременно обладает повышенной вязкостью, что является существенным плюсом в зимних условиях использования автомобиля.
Второй важный фактор – это устойчивость при повышенном тепловом режиме. Это значит, что оно имеет повышенную вязкость (в сравнении с полусинтетическим маслом и минеральным) при рабочих температурах начиная от 100 градусов и выше. Поэтому, разделяющая поверхности трения масляная плёнка остается неповреждённой при условии работы в повышенном тепловом режиме.
Помимо этих положительных качеств, есть и другие, например, повышенная стойкость к деформации сдвига. Существенным достоинством можно считать устойчивость к термоокислению. Это говорит о том, что во время эксплуатации автомобиля с использованием этого масла образование лака и нагара сведено к минимуму. Преимуществом в сравнении с минеральным маслом можно считать маленький расход на угар и меньшую испаряемость.
Бесспорным преимуществом является минимальное содержание сгущающих добавок — присадок. Некоторые виды синтетических масел вовсе не содержат таких присадок. По этому показателю можно считать масло особо стойким, поскольку присадки разрушаются первыми. Поскольку синтетическое масло обладает большим ресурсом, то его стоимость превышает в 3-5 раз стоимость минерального масла.

Для производства синтетического моторного масла, в качестве основы берут или эстеры, или полиальфаолефины (ПАО), а иногда используют их смесь. ПАО получают путём соединения коротких углеводородных цепочек. Для этого используют этилен и бутилен. Эстеры – это сложные эфиры. Их получают, когда карбоновые кислоты нейтрализуют с помощью спирта.

Для производства автомобильных моторных масел можно использовать растительное масло, например, кокосовое или рапсовое. Наибольшими достоинствами их всех основ обладают эстеры. Интересное свойство – молекулы у эстеров обладают полярностью, а это значит, что являясь частицами заряженными, они притягиваются к металлу. Второе интересное свойство в том, что вязкость эстеров возможно корректировать, когда изготавливается базовое масло, здесь всё зависит от того, какой будет использован спирт. Повышенная вязкость получается, если в изготовлении применяются тяжелые спирты. При производстве эстеров можно не применять присадок для сгущения, что очень хорошо, ведь они выгорают и масло приходит быстрее в негодность. Эстеры представляют собой продукты экологически чистые, что немаловажно.

К сожалению, стоимость эстеров пока слишком велика, чтобы авто-владелец с любым доходом мог их купить. Эстеры стоят значительно дороже минеральных базовых масел, а точнее в 5 – 10 раз. Вследствие высокой стоимости, их добавляют в количестве 3-5%, и то, как правило, в самые качественные и, соответственно, дорогие моторные масла.

ПАО.

ПАО масла или моторные масла сделанные на основе синтеза попутных нефтяных газов, принадлежат к разряду классической синтетики. Пришли они в гражданское применение из авиации, ведь наверху под куполом неба не слишком тепло, хоть и немного ближе к солнцу. Поэтому и требовалось, что бы смазочные материалы не только выдерживали нагрузки, но и не замерзали на большой высоте. Для этого как нельзя, более лучше, подходит ПАО база или ПолиАльфаОлефиновое базовое масло.

ПАО база имеет большие преимущества перед маслами на минеральной основе. Она выдерживает огромные нагрузки, высокие обороты, попадание топлива практически без ухудшения качества масла, очень долго сохраняет все свои основные технические параметры, прекрасно выдерживает термические нагрузки. Но ко всем достоинствам всегда есть какой нибудь недостаток, при всех своих замечательных свойствах ПАО база практически не в состоянии растворить в себе присадки. Для растворения присадок в ПАО маслах используют минеральную базу, с которой присадочный комплекс прекрасно смешивается. Так что не бывает в мире ПАО масел состоящих только из синтетики, в любом случае какой о процент минеральной основы присутствует.

Еще одно неприятное свойство ПАО базовых масел или масел 4-ой группы, это низкая полярность или практически ее отсутствие. То есть молекулы ПАО масла не «прилипают» к металлическим поверхностям и после выключения могут спокойно стремиться стечь в картер. Также не очень хорошо относятся к резинотехническим уплотнителям в виде сальников и прокладок. Для борьбы с подобным явлением используют специальные вещества, которые придают определенную полярность молекулам масла, укрепляя пленку и придавая свойства «прилипания» к металлу. Как правило, раньше для этих целей использовали представителей 5-ой группы базовых масел, так называемые сложные эфиры или эстеры. Эстеры даже в небольшом количестве существенно влияют на свойства ПАО базового масла и избавляют его от вышеописанных недостатков. На сегодняшний день, многие производители переходят на алкалированные нафталины. По сути, они так же как и эстеры избавляют ПАО базовое масло от недостатков, но это более современное поколение присадок. Таким образом классическое синтетическое масло – это масло в базе которого содержится большой процент ПАО базового масла.

Но синтетикой сейчас называют не только моторное масло, сделанное на ПАО основе, а и масло сделанное из сырой нефти путем глубокой очистки и химического катализа. Это производное HC синтеза -Гидрокрекинговое моторное масло. Гидрокрекинговое автомобильное масло отличается во – первых, более низкой ценой, а во – вторых, своими преимуществами и своими недостатками, которые как и в ПАО маслах являются зеркальным отражением достоинств. По сути, гидрокрекинг долгое время относили к минеральным маслам высокой степени очистки и это верно, ведь сделано оно именно из минеральной основы.

Но в 1999 году произошло историческое событие в виде решения американского суда по иску Exxon Mobil к Castrol. Тем кто не знал, а думаю таких большинство, поясню. Кастрол стал писать на своих канистрах с гидрокрекинговыми маслами, слово «Synthetic», чем вызвал возмущение специалистов Mobil. Произошло знаменитое противостояние между двумя достойными производителями. Решение суда подивило многих и по сути внесло исторические изменения на рынок смазочных материалов. В вольном переводе оно гласило, что надпись на канистре «Синтетика» это вопросы маркетинга, а вовсе не вопросы технического описания товара. После этого решения взошла звезда Гидрокрекинга на рынка синтетических продуктов. Масса компаний стали называть синтетикой продукты гидрокрекинговой очистки базового масла. Ну а так как технология производства более недорогая, нежели процесс синтеза из газа, то и цена такого продукта стала огромным конкурентным преимуществом, перед классической синтетикой на ПАО. Рынок смазочных материалов наполнился канистрами с надписями «Full Synthteic», «100% Synthetic», «Synthetic», которые по своему составу были смесью 3-й группы гидрокрекинговых базовых масел и второй или первой группой минеральных масел, но формально это была синтетика. Если не ошибаюсь, то по нашему стандарту достаточно 37% гидрокрекингового масла, что бы продукт мог называться синтетическим. В целом гидрокрекинговые масла вплотную по своим свойствам приблизились к ПАО маслам и по сути уже смело могут называться синтетикой, но есть ряд технических особенностей благодаря которым, ПАО базовые масла останутся недостижимым уровнем для гидрокрекинговой базы, по крайней мере на данном уровне технического развития химической отрасли.

Итак, мы знаем, что синтетическим автомобильным масло может называться, как классическое ПАО масло, так и продукция сделанная из нефти или гидрокрекинговое масло. С недавних пор, в кагорту синтетики пришла еще одна новая – старая технология, а именно GTL или Gas to Liquid. GTL базовые масла это продукция сделанная путем синтеза природных газов. Несмотря на то, что сделано оно из газа, но по международной классификации все же относится к 3-й группе базовых масел и имеет обозначение VHVI+. Моторные масла на GTL базовом масле это по сути компромисс по всем параметрам между достоинствами ПАО и гидрокрекинговых базовых масел. GTL технологии удалось впитать в себя большинство достоинств ПАО и гидрокрекинга и практически избежать их недостатков. Сама GTL технология известна давно, например в годы Второй мировой войны немецкие химики с ее помощью делали синтезированное горючее для боевой техники, по сути из подручных материалов. Но эта технология была достаточно дорога в использовании и не получала до недавнего времени широкого применения. Пионером на глобальном рынке можно по праву считать концерн Shell и его «дочку» Pennzoil. Обкатав на американском рынке и усовершенствовав составы Шелл построил огромный завод в Катаре на объем более миллиона баррелей GTL масла в год, что позволяет не только закрывать собственные потребности в маслах этой группы, но и продавать для сторонних производителей. Да и цена самой базы стала более демократичной, что позволяет ее применять без страха существенного повышения розничной стоимости готового продукта.

Как быть простому автолюбителю при выборе синтетики? Здесь все зависит от условий эксплуатации. В большинстве случаев при правильном подборе по вязкости и допускам можно ограничиться «бюджетной», но качественной гидрокрекинговой синтетикой. Если же вашему автомобилю приходиться работать в условиях, которые большинство назовут суровыми или экстремальными, то выбор однозначно за ПАО синтетикой или автомобильными маслами на GTL базе.

p.s. Уважаемый автолюбитель, не забывай, где живешь – для наших условий есть важное уточнение – дороги у нас пыльные, бензин и солярка – не всегда качественные – так что моторное масло засоряется довольно быстро, вне зависимости от способа производства основы. А значит – не забивайте себе голову ерундой, не относитесь серьезно к термину «гидрокрекинг» и подбирайте моторное масло исходя из допусков и классификаций, указанных в мануале вашего автомобиля. Если какое-то моторное масло обладает вязкостью, имеет рекомендации и одобрения производителя, по классам качества и допускам, которые выдвигаются вашим автопроизводителем — это масло можно заливать в ваш двигатель!

Расход масла.

Среди многих автомобилистов бытует мнение, что современные моторы масло не «съедают», поэтому нет необходимости проверять его уровень. В действительности это не так. Потребление масла зависит от вязкости масла, его качества, стиля вождения, состояния двигателя и охлаждающей системы. Больше масла потребляется на высоких скоростях или при частых ускорениях и торможениях. Новый двигатель потребляет больше масла. Необходимо помнить, что масло может разжижаться, это мешает точному определению потребления. Разные модели двигателей предъявляют свои требования к расходу масла. Например, литр масла на тысячу километров – почти норма для V6 или V8, но слишком много для малолитражных автомобилей. В любом случае нужно понимать, что любой двигатель, даже новый, расходует масло. Собственно, масло в двигателе просто угорает в цилиндрах, оставаясь на их стенках. Такое уж у него предназначение – покрывать все внутренние поверхности пленкой и не допускать сухого трения. А пленка эта сгорает в камере вместе с топливной смесью. Принято думать, что расход масла в двигателе считается показателем его технического состояния. Именно с вопроса о расходе масла часто начинаются переговоры о покупке б/у автомобиля. На самом же деле, повышенный расход масла далеко не всегда свидетельствует о серьезных проблемах с мотором, равно как и отсутствие этого расхода не может гарантировать идеальное состояние двигателя. Соответственно, если мотор стал потреблять больше масла, чем раньше — это еще далеко не повод отправлять автомобиль на свалку или на капитальный ремонт двигателя — нужно внимательно все взвесить и для начала понять, куда именно и почему уходит масло.

Вопрос только в том, сколько именно масла сгорает в Вашем двигателе и нужно ли с этим что-то делать. Опыт очень многих владельцев подержанных автомобилей показывает, что даже в изрядно изношенный мотор в большинстве случаев выгоднее просто доливать масло, нежели делать капитальный ремонт.

На самом деле причин повышенного расхода масла немного больше, чем, выражаясь языком «специалистов» СТО, просто «убитый мотор». Масло в двигателе может угорать сверх меры, а может еще и банально вытекать. И диагностировать настоящую причину повышенного расхода масла в большинстве моторов, на самом деле достаточно сложно. Более того, некоторые причины определяются только путем вскрытия, а потому нередко мастера после капитального ремонта не рассказывают владельцам, какая именно причина была в их случае. А все потому, что во многих ситуациях капитальный ремонт двигателя – далеко не самый оптимальный выход из ситуации.

Течь масла.

Тут вроде все понятно – если масло течет, надо менять прокладки, сальники и дальше в том же духе. Масло из мотора может вытекать в следующих местах (наиболее распространенные проблемы):

Прокладка клапанной крышки. Это сверху двигателя, в случае недостаточной герметичности подтеки масла хорошо видны на внешних боковых стенках мотора. Как правило, через эту прокладку много масла уходить не может, но герметичность системы нужно восстановить в любом случае.

Прокладка ГБЦ (головка блока цилиндров). Тоже в верхней части двигателя, под ГБЦ. Эта прокладка (в V-образных двигателях их две, как и ГБЦ) может повреждаться в разных местах, в следствии чего, масло может уходить наружу (симптомы такие же, как и с прокладкой клапанной крышки), кроме того, масло может уходить в систему охлаждения, если пробита та часть прокладки, которая находится между рабочими цилиндрами и отверстиями системы охлаждения. В этом случае мотор будет внешне сухим, но охлаждающая жидкость (ОЖ) будет мутной и поменяет цвет, а масло в двигателе будет пениться (пену можно увидеть на внутренней поверхности крышки горловины, через которую масло заливается в двигатель). Такую проблему нужно решать срочно, ибо она опасна для жизни двигателя (в следствие попадания ОЖ в моторное масло).

Сальники коленвала и распредвала. Далеко не на всех моторах такую течь можно увидеть, просто открыв капот. Но подтеки снизу двигателя плюс пятна (лужа) масла на внутренней поверхности защиты картера должны быть. Эту проблему, собственно как и любую другую течь, необходимо устранить как можно скорее.

Прокладка поддона картера. Эту течь можно увидеть только на подъемнике и при снятой защите. Обратите на это внимание при очередной замене масла.

Задний сальник коленвала (на входе в коробку передач). Этот сальник в большинстве случаев меняется только со снятием кпп, и увидеть его невозможно. Но диагностировать течь опять же можно по подтекам в нижней части двигателя со стороны коробки передач.

Прокладка под маслянным фильтром. Тут вопрос в качестве фильтра и его замены. Заменить прокладку достаточно просто.

Угар масла .

Сам по себе угар моторного масла диагностировать достаточно легко. Сгорая в двигателе, масло дает сизый дым в выхлопе, чего не может быть при сгорании качественного бензина (черный дым, как правило, означает неправильную работу впрыска). Кроме того, если в моторе на протяжении длительного срока сверх нормы сгорает масло, на краях выхлопной трубы образуется маслянистая черная кромка.

Гораздо сложнее понять причину угара масла. Без вскрытия двигателя, однозначно причину повышенного расхода моторного масла Вам не скажет никто. Но при этом есть ряд сравнительно недорогих и несложных способов борьбы с угаром, которые можно испробовать перед вскрытием двигателя. Для начала следует обратить внимание, что масло сгорает в каждом двигателе! Оно просто не может там не сгорать совсем, поскольку постоянно образует масляную пленку на внутренних поверхностях рабочих цилиндров, где воспламеняется топливо. Гораздо более важен вопрос о том, сколько именно масла сгорает в Вашем двигателе и какова норма угара для него.

Следующим важным моментом является то, что количество сгоревшего масла напрямую зависит от режима эксплуатации двигателя. Чем чаще на больших оборотах работает мотор – тем больше масла в нем сгорит, и от состояния собственно самого двигателя это никак не зависит. Тут работают законы физики – чем больше обороты – тем больше температура мотора и масла, соответственно жиже масло -> больше масла остается в рабочих цилиндрах.

Ни один параметр напрямую не подсказывает, насколько быстро оно будет угорать. Но косвенно об этом свидетельствуют две величины: испаряемость масла и температура вспышки. Если первый параметр практически нигде не фигурирует и разузнать его сложно, то температура вспышки указывается во всех спецификациях. При этой температуре происходит воспламенение паров с поверхности масляной пленки при воздействии открытого огня (в нашем случае — пламени от сгорания топлива). Зависит она от состава масла: чем больше в нем легких фракций, тем ниже температура вспышки.

Так на что же смотреть, когда выбираешь масло в расчете на его минимальный расход? Вопрос особенно актуален для побитых жизнью моторов, которым одной заправки масла от смены до смены уже не хватает. Задают его и любители быстро и далеко ездить, равно как и владельцы мощных моторов с наддувом. Легче всего ориентироваться по температуре вспышки, благо на сайтах она приводится для всех масел. Чем выше, тем лучше. Как показали наши испытания, цифра выше 230 °C обещает сравнительно малый расход на угар. А уж если она лезет за 240 °C, то совсем хорошо.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

нефтедобывающих стран 2020

Нефть сегодня является одним из самых прибыльных сырьевых товаров в мире. Начиная с 2016 года, в мире наблюдается серьезный рост цен на нефть, а также постоянно растущий спрос на нефть. Производство масла — это процесс, который останавливается только в том случае, если масла для добычи больше нет. Инфляция и соотношение спроса и предложения в нефтяной отрасли удерживают темпы добычи нефти на рекордно высоком уровне, что также привело к резкому росту объемов добычи нефти.

Это не обязательно лучшее действие, потому что оно действительно вызывает загрязнение и ущерб атмосфере, но на данный момент есть небольшие разговоры о сокращении добычи нефти среди стран, которые производят нефть. Добыча нефти измеряется в баррелях в сутки, или баррелей в сутки. Это буквально подсчет того, сколько баррелей нефти страна наполняет нефтью, которую она добывает ежедневно. Для сравнения: баррель нефти равен примерно 0,03 галлона нефти в минуту, если вы можете представить себе величину этого количества нефти.

Естественным источником нефти, конечно же, является множество нефтяных скважин по всему миру. В нефтяных скважинах интересно то, что они не только задерживают нефть. Избыточная вода и другие природные газы также улавливаются в скважинах, поэтому горняки должны отделить ненужное удержание воды и дополнительный газ, прежде чем помещать нефть в бочки.

Этот список также отсортирован по добыче нефти, поэтому Соединенные Штаты Америки считаются страной с наивысшими показателями добычи нефти, а Кувейт — десятой страной по добыче нефти и так далее.Вот список из первой десятки стран рядом с их соответствующими показателями BPD …

  • США, 12 108 000 баррелей в день
  • Россия, 10 835 000 баррелей в день
  • Саудовская Аравия, 9 580 000 баррелей в день
  • Ирак, 4 620 000 баррелей в день
  • Канада, 4,129,000 баррелей в день
  • Китай, 3 823 000 баррелей в день
  • Объединенные Арабские Эмираты, 3 068 000 баррелей в день
  • Кувейт, 2 652 000 баррелей в сутки
  • Бразилия, 2 604 000 баррелей в сутки
  • Иран, 2 213 000 баррелей в день

Давайте подробно рассмотрим количество нефти, которое три из этих десяти стран производят, начиная с США.Мы поговорим о Китае, который является пятым по величине производителем нефти в мире, а затем поговорим о Кувейте, стране, занимающей десятое место по добыче нефти на сегодняшний день.

США

Ежедневная добыча нефти, за которую отвечают США, составляет в общей сложности более пятнадцати миллионов баррелей в день. По приблизительной оценке в 12 108 000 баррелей нефти в сутки Соединенные Штаты годами являются ведущей нефтедобывающей страной. Это тоже имеет смысл, потому что США также являются одним из крупнейших потребителей нефти в мире.Добыча нефти — это отрасль, в которой Соединенным Штатам не следует ожидать спада в ближайшее время, учитывая зависимость страны от добычи нефти с точки зрения экономического положения.

Несмотря на то, что Соединенные Штаты являются крупнейшим производителем нефти в мире, они также закупают и импортируют более семи с половиной миллиардов баррелей связанных с нефтью товаров. Если объединить добычу нефти и потребление нефти только в Соединенных Штатах, вы получите в общей сложности чуть менее двадцати миллионов баррелей в сутки нефти, что просто показывает, сколько нефти находится в обращении

стран с наибольшим объемом добычи нефти. Производство

Этот ключевой экономический показатель для Сектор нефтедобычи был недавно обновлен.

  1. В 2019 году добыча нефти в Иране выросла на 2,7% по сравнению с годом ранее.
  2. С 2014 года добыча нефти в Иране выросла на 5,5% в годовом исчислении и составила 4843,27 тысяч баррелей в сутки.
  3. В 2019 году США были номером 1 по добыче нефти.
  4. В 2019 году Колумбия заняла 22-е место по добыче нефти, близкой к 881,26 тыс. Баррелей в сутки, по сравнению с 23-м в 2018 году.
# 49 стран тыс. Баррелей в сутки Последняя г / г CAGR за 5 лет
1 # 1 15 268.64 2019 г. -0,3% +5,3% Просмотр данных
2 # 2 12 408,11 2019 г. +1.0% +1,5% Просмотр данных
3 # 3 11 557,50 2019 г. +1,1% +1.3% Просмотр данных
4 # 4 5 244,83 2019 г. +0,7% +4,2% Просмотр данных
5 # 5 4843.27 2019 г. +2,7% +5,5% Просмотр данных
6 №6 4802,53 2019 г. +4.1% +8,2% Просмотр данных
7 # 7 4 038,45 2019 г. +2,5% +2.3% Просмотр данных
8 # 8 3 836,26 2019 г. +1,0% -2,0% Просмотр данных
9 №9 3087.89 2019 г. +1,3% -0,1% Просмотр данных
10 # 10 2 777,28 2019 г. +3.5% +3,5% Просмотр данных
11 # 11 2 028,07 2019 г. -1,9% -6.1% Просмотр данных
12 # 12 2 006,02 2019 г. -2,2% -2,5% Просмотр данных
13 # 13 1940.78 2019 г. +0,7% +2,6% Просмотр данных
14 # 14 1 933,15 2019 г. +2.9% -0,4% Просмотр данных
15 # 15 1830,13 2019 г. -0,8% -0.5% Просмотр данных
16 # 16 1 599,50 2019 г. +4,3% -1,2% Просмотр данных
17 # 17 1,584.89 2019 г. +4,7% -10,1% Просмотр данных
18 # 18 1 506,66 2019 г. -0.2% -1,1% Просмотр данных
19 # 19 1 005,39 2019 г. -7,3% +3.4% Просмотр данных
20 # 20 992,74 2019 г. +1,5% +1,0% Просмотр данных
21 # 21 896.94 2019 г. -11,2% +11,6% Просмотр данных
22 # 22 881,26 2019 г. +1.8% -2,3% Просмотр данных
23 # 23 877,86 2019 г. +1,0% -0.6% Просмотр данных
24 # 24 806,90 2019 г. +1,5% -1,3% Просмотр данных
25 # 25 792.86 2019 г. -1,9% -1,3% Просмотр данных
26 # 26 683,67 2019 г. +0.3% +1,1% Просмотр данных
27 # 27 663,17 2019 г. -1,0% -1.5% Просмотр данных
28 # 28 578,20 2019 г. -2,3% -1,9% Просмотр данных
29 # 29 527.43 2019 г. +2,0% -1,1% Просмотр данных
30 # 30 500,02 2019 г. +3.1% +1,6% Просмотр данных
31 # 31 335,89 2019 г. -5,6% -5.1% Просмотр данных
32 # 32 317,10 2019 г. -4,8% +4,6% Просмотр данных
33 # 33 281.25 2019 г. +2,4% -3,5% Просмотр данных
34 # 34 228,69 2019 г. +3.2% -2,3% Просмотр данных
35 # 35 194,68 2019 г. +0,3% -1.6% Просмотр данных
36 # 36 186,18 2019 г. -2,1% -8,1% Просмотр данных
37 # 37 150.07 2019 г. -2,3% -3,0% Просмотр данных
38 # 38 134,14 2019 г. +2.6% -2,9% Просмотр данных
39 # 39 109,67 2019 г. -5,7% -8.1% Просмотр данных
40 # 40 106,33 2019 г. -4,6% -3,4% Просмотр данных
41 # 41 102.07 2019 г. +1,5% +2,8%

добыча нефти | Определение и факты

Добыча нефти , добыча сырой нефти и, часто, попутного природного газа с Земли.

Полупогружная платформа для добычи нефти, работающая в воде на глубине 1800 метров (6000 футов) в бассейне Кампос, у побережья штата Рио-де-Жанейро, Бразилия.

© Divulgação Petrobras / Agencia Brasil (CC BY-SA 3.0 Brazil)

Нефть — это природный углеводородный материал, который, как полагают, образовался из остатков животных и растений в глубоких отложениях. Нефть, будучи менее плотной, чем окружающая вода, вытеснялась из пластов источника и мигрировала вверх через пористые породы, такие как песчаник и известняк, пока не была окончательно заблокирована непористой породой, такой как сланец или плотный известняк. Таким образом, нефтяные месторождения оказались в ловушке геологических особенностей, вызванных складчатостью, разломами и эрозией земной коры.

Трансаляскинский трубопровод

Трансаляскинский трубопровод проходит параллельно шоссе к северу от Фэрбенкса.

© Райнер Гросскопф — Photodisc / Getty Images

Нефть может существовать в газообразной, жидкой или почти твердой фазе по отдельности или в комбинации. Жидкая фаза обычно называется сырой нефтью, а более твердая фаза может называться битумом, гудроном, пеком или асфальтом. Когда эти фазы встречаются вместе, газ обычно находится над жидкостью, а жидкость — над более твердой фазой.Иногда нефтяные залежи, поднятые во время образования горных хребтов, подвергались эрозии с образованием смолистых отложений. Некоторые из этих месторождений были известны и эксплуатировались на протяжении всей истории человечества. Другие приповерхностные залежи жидкой нефти медленно просачиваются на поверхность через естественные трещины в вышележащих породах. Накопления из этих просачиваний, называемые каменным маслом, в 19 веке использовались в коммерческих целях для производства лампового масла путем простой дистилляции. Однако подавляющее большинство нефтяных месторождений находится в порах естественной породы на глубине от 150 до 7600 метров (от 500 до 25000 футов) от поверхности земли.Как правило, более глубокие отложения имеют более высокое внутреннее давление и содержат большее количество газообразных углеводородов.

Когда в 19 веке было обнаружено, что каменное масло дает дистиллированный продукт (керосин), пригодный для фонарей, начались активные поиски новых источников каменного масла. В настоящее время все согласны с тем, что первой скважиной, пробуренной специально для обнаружения нефти, была скважина Эдвина Лорентина Дрейка в Титусвилле, штат Пенсильвания, США, в 1859 году. Успех этой скважины, пробуренной рядом с выходом нефти, побудил продолжить бурение в том же районе. и вскоре привел к аналогичным исследованиям в другом месте.К концу века растущий спрос на нефтепродукты привел к бурению нефтяных скважин в других государствах и странах. В 1900 году мировая добыча сырой нефти составляла почти 150 миллионов баррелей. Половина этого объема была произведена в России, а большая часть (80 процентов) остальной части была произведена в Соединенных Штатах ( см. Также бурового оборудования).

Сэкономьте 50% на подписке Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сегодня

Появление и рост использования автомобилей во втором десятилетии 20-го века создали большой спрос на нефтепродукты.Годовая добыча превысила один миллиард баррелей в 1925 году и два миллиарда баррелей в 1940 году. К последнему десятилетию 20-го века в более чем 100 странах насчитывалось почти миллион скважин, добывающих более 20 миллиардов баррелей в год. К концу второго десятилетия 21 века добыча нефти выросла почти до 34 миллиардов баррелей в год, из которых растущая доля была обеспечена за счет сверхглубоководного бурения и нетрадиционной добычи нефти (в которой нефть добывается из сланцев, битуминозных песков и т. или битум, или извлекается другими методами, отличными от обычного бурения).Нефть добывается на всех континентах, кроме Антарктики, которая защищена от разведки месторождений экологическим протоколом к ​​Договору об Антарктике до 2048 года.

Первоначальная скважина

Дрейка была пробурена недалеко от известного участка просачивания сырой нефти с поверхности. В течение многих лет такие просачивания были единственным надежным индикатором наличия подземных запасов нефти и газа. Однако по мере роста спроса были разработаны новые методы оценки потенциала подземных горных пород. Сегодня разведка нефти требует интеграции информации, собранной в результате сейсмических исследований, геологического построения, геохимии, петрофизики, сбора данных географических информационных систем (ГИС), геостатистики, бурения, разработки резервуаров и других методов исследования поверхности и недр.Геофизические исследования, включая сейсмический анализ, являются основным методом разведки нефти. Методы гравитации и магнитного поля также являются исторически надежными методами оценки, которые можно применять в более сложных и сложных условиях разведки, таких как подсолевые структуры и глубоководные участки. Начиная с ГИС, гравиметрические, магнитные и сейсмические исследования позволяют геологам эффективно сосредоточить поиск целевых объектов для изучения, тем самым снижая риски, связанные с разведочным бурением.

сырая нефть

Натуральный выход нефти.

Предоставлено Норманом Дж. Хайном, доктором философии.

Существует три основных типа методов разведки: (1) поверхностные методы, такие как картографирование геологических объектов, обеспечиваемое ГИС, (2) территориальные исследования гравитационных и магнитных полей и (3) сейсмографические методы. Эти методы указывают на наличие или отсутствие геологических особенностей, благоприятных для скоплений нефти. До сих пор нет возможности предсказать наличие продуктивных подземных залежей нефти со 100-процентной точностью.

Введение в нефтегазовую промышленность

Открытие нефтегазовой отрасли

Нефтегазовый сектор, считающийся крупнейшим сектором в мире в долларовом выражении, является глобальным локомотивом, в котором задействованы сотни тысяч сотрудников по всему миру и ежегодно генерируются сотни миллиардов долларов во всем мире. В регионах, где расположены основные ННК, эти нефтегазовые компании настолько важны, что часто вносят значительный вклад в национальный ВВП.

В этом введении в нефтегазовую промышленность мы даем обзор нефтяного сектора.

Какие существуют нефтегазовые отрасли?

Энергетический сектор имеет три ключевых области: разведка, переработка и переработка.

  • Что такое апстрим? — Upstream — E&P (разведка и разведка). Это включает поиск подводных и подземных месторождений природного газа или месторождений сырой нефти, а также бурение разведочных скважин и бурение уже существующих скважин для добычи нефти и газа.
  • Что такое мидстрим? — Midstream занимается транспортировкой, хранением и переработкой нефти и газа. После извлечения ресурсов их нужно транспортировать на нефтеперерабатывающий завод, который часто находится в совершенно другом географическом регионе по сравнению с запасами нефти и газа. Транспортировка может включать в себя что угодно, от танкеров до трубопроводов и автопарков.
  • Что такое нисходящий поток? — «Нисходящий поток» относится к фильтрации сырья, полученного на этапе восходящего потока.Это означает переработку сырой нефти и очистку природного газа. Маркетинг и коммерческое распространение этих продуктов среди потребителей и конечных пользователей в различных формах, включая природный газ, дизельное топливо, бензин, бензин, смазочные материалы, керосин, реактивное топливо, асфальт, топочный мазут, СНГ (сжиженный нефтяной газ), а также ряд других видов нефтехимии.

Какие продукты являются самыми крупными?

Наибольшие объемы продукции нефтегазовой отрасли — мазут и бензин (бензин).Нефть — это основной материал для множества химических продуктов, включая фармацевтические препараты, удобрения, растворители и пластмассы. Поэтому нефть является неотъемлемой частью многих отраслей промышленности и имеет решающее значение для многих стран как основа их отраслей.

Прогноз развития нефтегазовой отрасли: 2019 год

Принимая во внимание спады отрасли, такие как обвал цен в 2013 году и крупные экологические катастрофы, такие как разлив нефти Deepwater Horizon в Мексиканском заливе в 2014 году, нефтегазовый сектор сейчас восстановился.

Зависимость мира от нефти и газа растет, поскольку мировая экономика и инфраструктура по-прежнему в значительной степени зависят от продуктов на основе нефти. Дискуссии о том, когда мировая добыча нефти и газа достигнет пика, похоже, находятся на периферии, даже в условиях ослабленной мировой экономики и сокращения доступности нефти. Нефтегазовая промышленность продолжает оказывать невероятное влияние на международную экономику и политику, особенно с учетом уровня занятости в этом секторе, с США.S. нефтегазовая промышленность поддерживает не менее 10 миллионов рабочих мест.

Восстановление произошло по нескольким причинам, но главная из них — успех соглашения об ограничении добычи между ОПЕК и странами, не входящими в ОПЕК. Кроме того, развивающиеся страны, такие как Китай, Бразилия и Россия, наращивают усилия по разведке и добыче. Однако геополитические соображения, такие как продолжающиеся проблемы в Венесуэле, Иране и выход Катара из ОПЕК, будут влиять на поставки нефти и газа.

Тенденция к возобновляемым и альтернативным источникам энергии — еще одна угроза для традиционных нефтегазовых компаний.В сочетании с усилением проэкологического законодательства и давлением со стороны правительства эта отрасль находится под более пристальным вниманием, чем когда-либо.

Производство электроэнергии из солнечных энергетических систем и морских ветров становится все более дешевым и рентабельным. По данным IRENA, более 80 процентов вновь вводимых возобновляемых источников энергии будет дешевле, чем новые источники нефти и природного газа.

В последнее время в отрасли наблюдается возрождение уверенности, поскольку она вступает в третий год восстановления.Рост растет быстрыми темпами, так как увеличение объемов добычи по-прежнему оказывает положительное влияние на предприятия среднего звена. Цена на нефть также стабилизировалась — на уровне около 50 долларов за баррель. Кроме того, ожидается, что в 2019 году будет создано 100000 рабочих мест, а количество действующих буровых установок в США увеличилось до 780+ по сравнению с 591 годом ранее.

Континентальный шельф Соединенного Королевства также, кажется, вернулся с потенциалом для открытия десятков неразработанных открытий с перспективами бурения на горизонте.Кроме того, мы можем ожидать улучшения прогнозов по добыче в Великобритании. Ожидается, что шельфовый сектор Великобритании улучшится после исторических минимумов за последние несколько лет, так как есть 16 запланированных новых проектов с определенными планами разработки и 29 объявленных новых проектов, которые, по прогнозам, начнут добычу в период с 2019 по 2025 год.

По оценкам, 30 миллиардов баррелей потребляются во всем мире каждый год, в первую очередь в развитых странах. На нефть также приходится значительный процент потребления энергии в регионе: 32% для Европы и Азии, 40% для Северной Америки, 41% для Африки, 44% для Юга и 53% для Ближнего Востока.

В этом ресурсном центре вы найдете самые популярные материалы по нефтегазовой отрасли Oil & Gas IQ, включая статьи, видео, вебинары, подкасты и подробные отчеты. Вы можете найти последний контент на боковой панели справа.

Oil & Gas IQ — это онлайн-портал, посвященный предоставлению последней информации для нефтегазового сообщества во всем мире. Мы изучаем разработки в нефтегазовой отрасли и способствуем дальнейшему обучению специалистов нефтегазовой отрасли. В нашем онлайн-контенте о нефти и газе мы предлагаем множество технических и стратегических конференций по нефтегазовой отрасли в Европе, Азии, США и на Ближнем Востоке.

Убедитесь, что вы не пропустите ни одной из наших новостей и аналитических материалов по нефтегазовой отрасли. Присоединяйтесь к Oil & Gas IQ сегодня

Подробнее о нефтегазовой отрасли:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *